【題目】如圖,為圓的直徑,為圓上一點(diǎn),為延長(zhǎng)線一點(diǎn),且,于點(diǎn).
(1)求證:直線為圓的切線;
(2)設(shè)與圓交于點(diǎn),的延長(zhǎng)線與交于點(diǎn),
①求證:
②若,,求的值.
【答案】(1)見(jiàn)解析;(2)①見(jiàn)解析;②
【解析】
(1)說(shuō)明OC是△BDA的中位線,利用中位線的性質(zhì),得到∠OCE=∠CED=90°,從而得到CE是圓O的切線.
(2)①過(guò)點(diǎn)作直徑,連接,,運(yùn)用已知條件證明,即可得到,即.
②利用直徑上的圓周角,得到△PEF是直角三角形,利用角相等,可得到△PEF∽△PEA、△PCF∽△PAC,從而得到PC=PE=5.然后求出sin∠PEF的值
(1)證明:∵于點(diǎn)∴,
∵,∴是的中點(diǎn),又∵是的中點(diǎn),
∴是的中位線,
∴,∴
∴,又∵點(diǎn)在圓上,
∴是圓的切線.
(2)①證明:過(guò)點(diǎn)作直徑,連接,,
∵是直徑,∴∴
∵是圓的切線,∴,
∴∴
∵,∴
∵,∴
∴∴.
②∵直徑,∴即
∵∴
∵∴
∴∴
∵∴
在中.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(﹣1,0)、點(diǎn)B(3,0)、點(diǎn)C(4,y1),若點(diǎn)D(x2,y2)是拋物線上任意一點(diǎn),有下列結(jié)論:
①二次函數(shù)y=ax2+bx+c的最小值為﹣4a;
②若﹣1≤x2≤4,則0≤y2≤5a;
③若y2>y1,則x2>4;
④一元二次方程cx2+bx+a=0的兩個(gè)根為﹣1和
其中正確結(jié)論的個(gè)數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣4x+4與x軸、y軸分別交于A.B兩點(diǎn),以AB為邊在第一象限內(nèi)作正方形ABCD,頂點(diǎn)D在雙曲線y=kx-1上,將該正方形沿x軸負(fù)方向平移a個(gè)單位長(zhǎng)度后,頂點(diǎn)C恰好落在雙曲線y=kx-1上,則a的值是( )
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形的邊長(zhǎng)為,在正方形外,,過(guò)作于,直線,交于點(diǎn),直線交直線于點(diǎn),則下列結(jié)論正確的是( )
①;②;③;
④若,則
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:
如圖1,在平面內(nèi)選一定點(diǎn)O,引一條有方向的射線Ox,再選定一個(gè)單位長(zhǎng)度,那么平面上任一點(diǎn)M的位置可由∠MOx的度數(shù)θ與OM的長(zhǎng)度m確定,有序數(shù)對(duì)(θ,m)稱(chēng)為M點(diǎn)的“極坐標(biāo)”,這樣建立的坐標(biāo)系稱(chēng)為“極坐標(biāo)系”.
應(yīng)用:在圖2的極坐標(biāo)系下,如果正六邊形的邊長(zhǎng)為2,有一邊OA在射線Ox上,則正六邊形的頂點(diǎn)C的極坐標(biāo)應(yīng)記為( 。
A.(60°,4) B.(45°,4) C.(60°,2 ) D.(50°,2 )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把一張長(zhǎng)方形紙片ABCD沿對(duì)角線BD對(duì)折,使得點(diǎn)C落在點(diǎn)F處,DF交AB于E,AD=8,AB=16.
(1)求證:DE=BE;
(2)求S△BEF;
(3)若M、N分別為線段CD、DB上的動(dòng)點(diǎn),直接寫(xiě)出(NC+NM)的最小值___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,點(diǎn)P是正方形ABCD內(nèi)的一點(diǎn),連接PA,PB,PC.將△PAB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°到△P′CB的位置(如圖).
(1)設(shè)AB的長(zhǎng)為a,PB的長(zhǎng)為b(b<a),求△PAB旋轉(zhuǎn)到△P′CB的過(guò)程中邊PA所掃過(guò)區(qū)域(圖中陰影部分)的面積;
(2)若PA=2,PB=4,∠APB=135°,求PC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小王是“新星廠”的一名工人,請(qǐng)你閱讀下列信息:
信息一:工人工作時(shí)間:每天上午8:00—12:00,下午14:00—18:00,每月工作25天;
信息二:小王生產(chǎn)甲、乙兩種產(chǎn)品的件數(shù)與所用時(shí)間的關(guān)系見(jiàn)下表:
生產(chǎn)甲種產(chǎn)品數(shù)(件) | 生產(chǎn)乙種產(chǎn)品數(shù)(件) | 所用時(shí)間(分鐘) |
10 | 10 | 350 |
30 | 20 | 850 |
信息三:按件計(jì)酬,每生產(chǎn)一件甲種產(chǎn)品得1.50元,每生產(chǎn)一件乙種產(chǎn)品得2.80元;
信息四:該廠工人每月收入由底薪和計(jì)酬工資兩部分構(gòu)成,小王每月的底薪為1900元.請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:
(1)小王每生產(chǎn)一件甲種產(chǎn)品和一件乙種產(chǎn)品分別需要多少分鐘;
(2)2018年1月工廠要求小王生產(chǎn)甲種產(chǎn)品的件數(shù)不少于60件,則小王該月收入最多是多少元?此時(shí)小王生產(chǎn)的甲、乙兩種產(chǎn)品分別是多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖16,拋物線y=ax2+3ax+c(a>0)與y軸交于點(diǎn)C,與x軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè).點(diǎn)B的坐標(biāo)為(1,0),OC=3OB.
(1)求拋物線的解析式.
(2)若點(diǎn)D是線段AC下方拋物線上的動(dòng)點(diǎn),求四邊形ABCD面積的最大值.
(3)若點(diǎn)E在x軸上,點(diǎn)P在拋物線上.是否存在以A,C,E,P為頂點(diǎn)且以AC為一邊的平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com