【題目】如圖,在等腰三角形ABC中,AB=AC,∠A=36°,BD、CE分別是∠ABC、∠ACB的平分線,且交于點O,則圖中等腰三角形有________
【答案】8個
【解析】
由在△ABC中,AB=AC,∠A=36°,根據等邊對等角,即可求得∠ABC與∠ACB的度數,又由BD、CE分別為∠ABC與∠ACB的角平分線,即可求得∠ABD=∠CBD=∠ACE=∠BCE=∠A=36°,然后利用三角形內角和定理與三角形外角的性質,即可求得∠BEO=∠BOE=∠ABC=∠ACB=∠CDO=∠COD=72°,由等角對等邊,即可求得答案.
∵在△ABC中,AB=AC,∠A=36°,
∴∠ABC=∠ACB==72°,
∵BD、CE分別為∠ABC與∠ACB的角平分線,
∴∠ABD=∠CBD=∠ACE=∠BCE=∠A=36°,
∴AE=CE,AD=BD,BO=CO,
∴△ABC,△ABD,△ACE,△BOC是等腰三角形,
∵∠BEC=180°∠ABC∠BCE=72°,∠CDB=180°∠BCD∠CBD=72°,∠EOB=∠DOC=∠CBD+∠BCE=72°,
∴∠BEO=∠BOE=∠ABC=∠ACB=∠CDO=∠COD=72°,
∴BE=BO,CO=CD,BC=BD=CO,
∴△BEO,△CDO,△BCD,△CBE是等腰三角形.
∴圖中的等腰三角形有8個.
故答案為:8個.
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD內有一折線段,其中AE丄EF,EF丄FC,并且AE=6,EF=8,FC=10,則正方形與其外接圓之間形成的陰影部分的面積為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx過A(4,0),B(1,3)兩點,點C、B關于拋物線的對稱軸對稱,過點B作直線BH⊥x軸,交x軸于點H.
(1)求拋物線的表達式;
(2)點P是拋物線上一動點,且位于第四象限,當△ABP的面積為6時,求出點P的坐標;
(3)若點M在直線BH上運動,點N在x軸上運動,當以點C、M、N為頂點的三角形為等腰直角三角形時,請直接寫出此時△CMN的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校課外小組為了解同學們對學!瓣柟馀懿佟被顒拥南矚g程度,抽取部分學生進行調查.被調查的每個學生按A(非常喜歡)、B(比較喜歡)、C(一般)、D(不喜歡)四個等級對活動評價.圖(1)和圖(2)是該小組采集數據后繪制的兩幅統(tǒng)計圖.經確認扇形統(tǒng)計圖是正確的,而條形統(tǒng)計圖尚有一處錯誤且并不完整.請你根據統(tǒng)計圖提供的信息,解答下列問題:
(1)此次調查的學生人數為;
(2)條形統(tǒng)計圖中存在錯誤的是(填A,B,C中的一個),并在圖中加以改正;
(3)在圖(2)中補畫條形統(tǒng)計圖中不完整的部分;
(4)如果該校有600名學生,那么對此活動“非常喜歡”和“比較喜歡”的學生共有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在中,,,,點E是BC的中點,動點P從A點出發(fā),以每秒2個單位長度的速度沿運動.若設點P運動的時間是t秒,那么當t取何值時,的面積等于10?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,分別以AB、AD為邊向外作等邊△ABE、△ADF,延長CB交AE于點G,點G在點A、E之間,連接CE、CF,EF,則以下四個結論一定正確的是:①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等邊△;④CG⊥AE( 。
A. 只有①② B. 只有①②③ C. 只有③④ D. ①②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明從家到圖書館看報然后返回,他離家的距離y與離家的時間x之間的對應關系如圖所示,如果小明在圖書館看報30分鐘,那么他離家50分鐘時離家的距離為 km.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】新農村社區(qū)改造中,有一部分樓盤要對外銷售,某樓盤共23層,銷售價格如下:第八層樓房售價為4000元/米2,從第八層起每上升一層,每平方米的售價提高50元;反之,樓層每下降一層,每平方米的售價降低30元,已知該樓盤每套樓房面積均為120米2.
若購買者一次性付清所有房款,開發(fā)商有兩種優(yōu)惠方案:
方案一:降價8%,另外每套樓房贈送a元裝修基金;
方案二:降價10%,沒有其他贈送.
(1)請寫出售價y(元/米2)與樓層x(1≤x≤23,x取整數)之間的函數關系式;
(2)老王要購買第十六層的一套樓房,若他一次性付清購房款,請幫他計算哪種優(yōu)惠方案更加合算.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com