【題目】如圖 ,ABC 的外角平分線 CP 和內(nèi)角平分線 BP 相交于點 P,若∠BPC=25°,則∠CAP=__________.

【答案】65°

【解析】

延長BA,作PNBD于點N,PFBA于點FPMAC于點M,設(shè)∠PCD=x°,根據(jù)外角與內(nèi)角性質(zhì)得出∠BAC的度數(shù),再利用角平分線的性質(zhì)以及直角三角形全等的判定,得出∠CAP=FAP,即可得出答案.

延長BA,作PNBD于點NPFBA于點F,PMAC于點M

設(shè)∠PCD=x°,

CP平分∠ACD,

∴∠ACP=PCD=x°,PM=PN,

BP平分∠ABC,

∴∠ABP=PBCPF=PN,

PF=PM,

∵∠BPC=25°,

∴∠ABP=PBC=x-25)°,

∴∠BAC=ACD-ABC=2x°-x°-25°)-x°-25°)=50°,

∴∠CAF=130°,

RtPFARtPMA中,

RtPFARtPMAHL),

∴∠FAP=PAC=65°.

故答案為65°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=ax2+2x+cx軸交于A(﹣1,0)B(3,0)兩點,與y軸交于點C,點D是該拋物線的頂點.

(1)求拋物線的解析式和直線AC的解析式;

(2)請在y軸上找一點M,使BDM的周長最小,求出點M的坐標;

(3)試探究:在拋物線上是否存在點P,使以點A,P,C為頂點,AC為直角邊的三角形是直角三角形?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CABC,垂足為C,AC2cmBC6cm,射線BMBQ,垂足為B,動點PC點出發(fā)以1cm/s的速度沿射線CQ運動,點N為射線BM上一動點,滿足PNAB,隨著P點運動而運動,當點P運動_____秒時,△BCA與點P、N、B為頂點的三角形全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,OD垂直于弦AC于點E,且交⊙O于點D,F(xiàn)是BA延長線上一點,若∠CDB=∠BFD.

(1)求證:FD是⊙O的一條切線;

(2)若AB=10,AC=8,求DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C為線段AB上一點,點DBC的中點,且AB18cmAC4CD

1)圖中共有   條線段;

2)求AC的長;

3)若點E在直線AB上,且EA2cm,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著科技與經(jīng)濟的發(fā)展,中國廉價勞動力的優(yōu)勢開始逐漸消失,而作為新興領(lǐng)域的機器人產(chǎn)業(yè)則迅速崛起,機器人自動化線的市場也越來越大,并且逐漸成為自動化生產(chǎn)線的主要方式,某化工廠要在規(guī)定時間內(nèi)搬運1200千元化工原料.現(xiàn)有A,B兩種機器人可供選擇,已知A型機器人比B型機器人每小時多搬運30千克,A型機器人搬運900千克所用的時間與B型機器人搬運600千克所用的時間相等.

(1)兩種機器人每小時分別搬運多少化工原料?

(2)該工廠原計劃同時使用這兩種機器人搬運,工作一段時間后,A型機器人又有了新的搬運任務(wù),但必須保證這批化工原料在11小時內(nèi)全部搬運完畢.求:A型機器人至少工作幾個小時,才能保證這批化工原料在規(guī)定的時間內(nèi)完成.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠1=2,∠A=D,說明∠F與∠C相等的理由.

解:∵∠1=2( 已知 ),∠2=4 ( )

∴∠1=4( 等量代換 ),

FBEC( )

∴∠3=C( 兩直線平行,同位角相等 )

∵∠A=D( )

EDAC( ),

∴∠F=3 ( ),

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形OABC是平行四邊形,點C在x軸上,反比例函數(shù)y=(x>0)的圖象經(jīng)過點A(5,12),且與邊BC交于點D.若AB=BD,則點D的坐標為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠DAE+CBF180°,CE平分∠BCD,∠BCD2E

1)求證:ADBC;

2CDEF平行嗎?寫出證明過程;

3)若DF平分∠ADC,求證:CEDF

查看答案和解析>>

同步練習(xí)冊答案