【題目】如圖,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分別與⊙O相切于E,F,G三點,過點D作⊙O的切線BC于點M,切點為N,則DM的長為( )
A.
B.
C.
D.2
【答案】A
【解析】解:連接OE,OF,ON,OG,
在矩形ABCD中,
∵∠A=∠B=90°,CD=AB=4,
∵AD,AB,BC分別與⊙O相切于E,F,G三點,
∴∠AEO=∠AFO=∠OFB=∠BGO=90°,
∴四邊形AFOE,FBGO是正方形,
∴AF=BF=AE=BG=2,
∴DE=3,
∵DM是⊙O的切線,
∴DN=DE=3,MN=MG,
∴CM=5﹣2﹣MN=3﹣MN,
在Rt△DMC中,DM2=CD2+CM2 ,
∴(3+NM)2=(3﹣NM)2+42 ,
∴NM= ,
∴DM=3 = ,
故選A.
【考點精析】利用矩形的性質和切線的性質定理對題目進行判斷即可得到答案,需要熟知矩形的四個角都是直角,矩形的對角線相等;切線的性質:1、經過切點垂直于這條半徑的直線是圓的切線2、經過切點垂直于切線的直線必經過圓心3、圓的切線垂直于經過切點的半徑.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,一次函數y=kx+b(k≠0)的圖象與反比例函數y= 的圖象交于A、B兩點,與x軸交于點C;點A在第一象限,點B的坐標為(﹣6,n);E為x軸正半軸上一點,且tan∠AOE= .
(1)求點A的坐標;
(2)求一次函數的表達式;
(3)求△AOB的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).
(1)求出△ABC的面積;
(2)在圖中作出△ABC關于y軸的對稱圖形△A1B1C1;
(3)寫出點A1,B1,C1的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,∠C=90°,AC=BC=4cm,D是AB的中點,以C為圓心,4cm長為半徑作圓,則A,B,C,D四點中,在圓內的有( )
A.4個
B.3個
C.2個
D.1個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,美麗的弦圖,蘊含著四個全等的直角三角形.已知每個直角三角形較長的直角邊為a,較短的直角邊為b,斜邊長為c.如圖②,現將這四個全圖②等的直角三角形緊密拼接,形成飛鏢狀,已知外圍輪廓(實線)的周長為24,OC=3,則該飛鏢狀圖案的面積( 。
A. 6 B. 12 C. 24 D. 24
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖△ABC是正三角形,曲線CDEF叫做“正三角形的漸開線”,其中 、 、 圓心依次按A、B、C…循環(huán),它們依次相連接.若AB=1,則曲線CDEF長是(結果保留π).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某閉合電路中,其兩端電壓恒定,電流I(A)與電阻R(Ω)圖象如圖所示,回答問題:
(1)寫出電流I與電阻R之間的函數解析式.
(2)如果一個用電器的電阻為5Ω,其允許通過的最大電流是1A,那么這個用電器接在這個閉合電路中,會不會燒毀?說明理由.
(3)若允許的電流不超過4A時,那么電阻R的取值應該控制在什么范圍?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】計算:()﹣2﹣+(﹣4)0﹣cos45°.
【答案】1
【解析】試題分析:把原式的第一項根據負整數指數冪的意義化簡,第二項根據算術平方根的定義求出9的算術平方根,第三項根據零指數公式化簡,最后一項利用特殊角的三角函數值化簡,合并后即可求出值.
試題解析:原式=4﹣3+1﹣
=2﹣1
=1.
【題型】解答題
【結束】
16
【題目】《九章算術》“勾股”章有一題:“今有二人同所立,甲行率七,乙行率三.乙東行,甲南行十步而斜東北與乙會.問甲乙行各幾何”.大意是說,已知甲、乙二人同時從同一地
點出發(fā),甲的速度為7,乙的速度為3.乙一直向東走,甲先向南走10步,后又斜向北偏東方向走了一段后與乙相遇.那么相遇時,甲、乙各走了多遠?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于點E.在△ABC外有一點F,使FA⊥AE,FC⊥BC.
(1)求證:BE=CF;
(2)在AB上取一點M,使BM=2DE,連接MC,交AD于點N,連接ME.求證:①ME⊥BC;②DE=DN.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com