【題目】某小學開展寒假爭星活動,學生可以從自理星”、“讀書星”、“健康星”、“孝敬星等中選一個項目參加爭星競選,根據(jù)該校一年級某班學生的爭星報名情況,繪制成了如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中信息回答下列問題:

(1)參加調查的學生共有   人.

(2)將條形統(tǒng)計圖補充完整;

(3)請計算扇形統(tǒng)計圖中讀書星對應的扇形圓心角度數(shù);

(4)根據(jù)調查結果,試估計該小學全校3600名學生中爭當健康星的學生人數(shù).

【答案】(1)50;(2)補圖見解析;(3)72°;(4)該小學全校3600名學生中爭當健康星的學生人數(shù)為864人.

【解析】

利用孝敬星的人數(shù)÷所占百分比可得被調查的學生總數(shù);

利用總人數(shù)減去其它各項的人數(shù)=自理星的人數(shù),再補圖即可;

計算出C所占百分比,再用360°×C所占百分比可得答案;

首先計算出樣本中健康星的學生所占百分比,再利用樣本估計總體的方法計算即可.

(1)參加調查的學生共有8÷16%=50人,

故答案為:50;

(2)“自理星的人數(shù)為50×30%=15人,

補全圖形如下:

(3)扇形統(tǒng)計圖中讀書星對應的扇形圓心角度數(shù)為360°×=72°;

(4)3600×=864,

答:該小學全校3600名學生中爭當健康星的學生人數(shù)為864人.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】綜合與實踐:

問題情境:在一次綜合實踐活動課上,同學們以菱形為對象,研究菱形旋轉中的問題:

已知,在菱形ABCD中,BD為對角線,,AB=4,將菱形ABCD繞頂點A順時針旋轉,旋轉角為(單位°).旋轉后的菱形為.在旋轉探究活動中提出下列問題,請你幫他們解決.

觀察證明:

1)如圖1,若旋轉角,BD相交于點M,AB相交于點N.請說明線段DM的數(shù)量關系;

操作計算:

2)如圖2,連接,菱形ABCD旋轉的過程中,當AB互相垂直時,的長為

3)如圖3,若旋轉角,分別連接,,過點A分別作,連接EF,菱形ABCD旋轉的過程中,發(fā)現(xiàn)在中存在長度不變的線段EF,請求出EF長度;

操作探究:

4)如圖4,在(3)的條件下,請判斷以,三條線段長度為邊的三角形是什么特殊三角形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:在平面直角坐標系中,點P(x,y)的橫、縱坐標的絕對值之和叫做點P(x,y)的勾股值,記[P]|x|+|y|

(1)已知M(p,2p)在反比例函數(shù)y的圖象上,且[M]3,求反比例函數(shù)的解析式;

(2)已知點A是直線yx+2上的點,且[A]4,求點A的坐標;

(3)若拋物線yax2+bx+1與直線yx只有一個交點C,已知點C在第一象限,且2≤[C]≤4,令t2b24a+2020,求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB6AD8,以頂點A為圓心作半徑為r的圓,若要求另外三個頂點至少有一個在圓內,且至少有一個在圓外,則r的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)在直角坐標平面內,已知O的半徑為R,點AO上任意一點,定點B與圓心O的距離為m,線段AB的長度為l.則當mR時,l的最大值和最小值依次為   ,   ;當mR時,l的最大值和最小值依次為   ,   

2)如圖,O的半徑為2,點P的“K值”定義如下:若點QO上任意一點,線段PQ長度的最大值與最小值之差即為點P的“K值”,記為KP,特別地,當點PQ重合時,線段PQ的長度為0

若點A6,8),B(﹣10),則KA   ,KB   

若直線y2x1上存在點P,使,求出點P的橫坐標;

直線b0)與x軸,y軸分別交于A,B,若線段AB上存在點P,使得,請你直接寫出b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)觀察猜想

如圖①點B、A、C在同一條直線上,DBBC,ECBC且∠DAE=90°,AD=AE,則BC、BD、CE之間的數(shù)量關系為;

(2)問題解決

如圖②,在RtABC中,∠ABC=90°,CB=4,AB=2,以AC為直角邊向外作等腰RtDAC,連結BD,求BD的長;

(3)拓展延伸

如圖③,在四邊形ABCD中,∠ABC=ADC=90°,CB=4,AB=2,DC=DA,請直接寫出BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】運城有甲、乙兩家葡萄采摘園的葡萄銷售價格相同,中秋期間,兩家采摘園推出優(yōu)惠方案,甲園的優(yōu)惠方案是:游客進園需購買門票,采摘的葡萄六折優(yōu)惠;乙園的優(yōu)惠方案是:游客進園不需購買門票,采摘園的葡萄按售價付款。優(yōu)惠期間,設游客的葡萄采摘量為(千克),在甲園所需總費用為(元),在乙園所需總費用為(元),,之間的函數(shù)關系如圖所示.

1)求,的函數(shù)表達式;

2)在中秋期間,李娜一家三口準備去葡萄園采摘葡萄,采摘的葡萄合在一起支付費用,則李娜一家應選擇哪家葡萄園更劃算?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某小區(qū)開展了行車安全,方便居民的活動,對地下車庫作了改進.如圖,這小區(qū)原地下車庫的入口處有斜坡AC長為13米,它的坡度為i12.4,ABBC,為了居民行車安全,現(xiàn)將斜坡的坡角改為13°,即∠ADC13°(此時點B、CD在同一直線上).

1)求這個車庫的高度AB;

2)求斜坡改進后的起點D與原起點C的距離(結果精確到0.1米).

(參考數(shù)據(jù):sin13°≈0.225cos13°≈0.974,tan13°≈0.231cot13°≈4.331

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】12分)如圖,經(jīng)過點C(0,﹣4)的拋物線)與x軸相交于A(﹣2,0),B兩點.

(1)a 0, 0(填“>”或“<”);

(2)若該拋物線關于直線x=2對稱,求拋物線的函數(shù)表達式;

(3)在(2)的條件下,連接AC,E是拋物線上一動點,過點E作AC的平行線交x軸于點F.是否存在這樣的點E,使得以A,C,E,F(xiàn)為頂點所組成的四邊形是平行四邊形?若存在,求出滿足條件的點E的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案