【題目】計算: ﹣2sin45°﹣(1+ 0+21

【答案】解:原式= ﹣2× ﹣1+ =﹣
【解析】本題涉及零指數(shù)冪、負指數(shù)冪、特殊角的三角函數(shù)值3個考點.在計算時,需要針對每個考點分別進行計算,然后根據(jù)實數(shù)的運算法則求得計算結果.
【考點精析】本題主要考查了零指數(shù)冪法則和整數(shù)指數(shù)冪的運算性質的相關知識點,需要掌握零次冪和負整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù))才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,AB=AC=3,BC=2,點D是邊AB上的動點,過點D作DE∥BC,交邊AC于點E,點Q是線段DE上的點,且QE=2DQ,連接BQ并延長,交邊AC于點P.設BD=x,AP=y.
(1)求y關于x的函數(shù)解析式及定義域;
(2)當△PQE是等腰三角形時,求BD的長;
(3)連接CQ,當∠CQB和∠CBD互補時,求x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,圖1是由5個完全相同的正方體堆成的幾何體,現(xiàn)將標有E的正方體平移至如圖2所示的位置,下列說法中正確的是(
A.左、右兩個幾何體的主視圖相同
B.左、右兩個幾何體的左視圖相同
C.左、右兩個幾何體的俯視圖不相同
D.左、右兩個幾何體的三視圖不相同

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在△ABC中,AB=AC,tan∠B=2,BC=4,D為BC邊的中點,點E在BC邊的延長線上,且CE=BC,連接AE,F(xiàn)為線段AE的中點
(1)求線段CF的長;
(2)求∠CAE的正弦值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某校綜合實踐活動小組的同學欲測量公園內(nèi)一棵樹DE的高度,他們在這棵樹正前方一座樓亭前的臺階上A點處測得樹頂端D的仰角為30°,朝著這棵樹的方向走到臺階下的點C處,測得樹頂端D的仰角為60°.已知A點的高度AB為2m,臺階AC的傾斜角∠ACB為30°,且B、C、E三點在同一條直線上.請根據(jù)以上條件求出樹DE的高度(測傾器的高度忽略不計).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,對稱軸為直線x= 的拋物線經(jīng)過點A(6,0)和B(0,4).

(1)求拋物線解析式及頂點坐標;
(2)設點E(x,y)是拋物線上一動點,且位于第四象限,四邊形OEAF是以OA為對角線的平行四邊形,求平行四邊形OEAF的面積S與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
①當平行四邊形OEAF的面積為24時,請判斷平行四邊形OEAF是否為菱形?
②是否存在點E,使平行四邊形OEAF為正方形?若存在,求出點E的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在平行四邊形ABCD中,AE平分∠BAD,交BC于點E,BF平分∠ABC,交AD于點F,AE與BF交于點P,連接EF,PD.
(1)求證:四邊形ABEF是菱形.
(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)學課本上,同學們已經(jīng)探究過“經(jīng)過已知直線外一點作這條直線的垂線“的尺規(guī)作圖過程:
已知:直線l和l外一點P

求作:直線l的垂線,使它經(jīng)過點P.
作法:如圖:⑴在直線l上任取兩點A、B;
⑵分別以點A、B為圓心,AP,BP長為半徑畫弧,兩弧相交于點Q;
⑶作直線PQ.
參考以上材料作圖的方法,解決以下問題:
(1)以上材料作圖的依據(jù)是:
(2)已知,直線l和l外一點P,
求作:⊙P,使它與直線l相切.(尺規(guī)作圖,不寫作法,保留作圖痕跡,并把作圖痕跡用黑色簽字筆描黑)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市東坡實驗中學準備開展“陽光體育活動”,決定開設足球、籃球、乒乓球、羽毛球、排球等球類活動,為了了解學生對這五項活動的喜愛情況,隨機調查了m名學生(每名學生必選且只能選擇這五項活動中的一種).

根據(jù)以上統(tǒng)計圖提供的信息,請解答下列問題:
(1)m= , n=
(2)補全上圖中的條形統(tǒng)計圖.
(3)若全校共有2000名學生,請求出該校約有多少名學生喜愛打乒乓球.
(4)在抽查的m名學生中,有小薇、小燕、小紅、小梅等10名學生喜歡羽毛球活動,學校打算從小薇、小燕、小紅、小梅這4名女生中,選取2名參加全市中學生女子羽毛球比賽,請用列表法或畫樹狀圖法,求同時選中小紅、小燕的概率.(解答過程中,可將小薇、小燕、小紅、小梅分別用字母A、B、C、D代表)

查看答案和解析>>

同步練習冊答案