【題目】如圖,在中,,是中線,的中點,過點的延長線于,連接.求證:四邊形是菱形.

【答案】見解析.

【解析】

根據(jù)AAS證△AFE≌△DBE,推出AF=BD.結(jié)合已知條件,利用“有一組對邊平行且相等的四邊形是平行四邊形”得到ADCF是平行四邊形,再通過直角三角形斜邊上的中線等于斜邊的一半,證明AD=DC,從而證明ADCF是菱形.

證明:∵AFBC

∴∠AFE=DBE,

EAD的中點,

AE=DE,

在△AFE和△DBE中,

∴△AFE≌△DBE(AAS)

AF=DB.

ADBC邊上的中線

DB=DC,

AF=CD.

AFBC

∴四邊形ADCF是平行四邊形,

∵∠BAC=90,ADBC邊上的中線,

AD=DC=BC,

ADCF是菱形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABACBECE,下面四個結(jié)論:①BPCP;②ADBC;③AE平分∠BAC;④∠PBC=∠PCB.其中正確的結(jié)論個數(shù)有(   )個.

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰直角中,,的中點,將折疊,使點與點重合,為折痕,則的值是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】近年,《中國詩詞大會》、《朗讀者》、《經(jīng)典詠流傳》、《國家寶藏》等文化類節(jié)目相繼走紅,被人們稱為“清流綜藝”.七中育才某興趣小組想了解全校學生對這四個節(jié)目的喜愛情況,隨機抽取了部分學生進行調(diào)查統(tǒng)計,要求每名學生選出一個自己最喜愛的節(jié)目,并將調(diào)查結(jié)果繪制成如下統(tǒng)計圖(其中《中國詩詞大會》,《朗讀者》,《經(jīng)典詠流傳》,《國家寶藏》分別用,,表示).請你結(jié)合圖中信息解答下列問題:

1)本次調(diào)查的學生人數(shù)是 人;

2)請把條形統(tǒng)計圖補充完整;

3)在扇形統(tǒng)計圖中,對應的圓心角的度數(shù)是 °;

4)已知七中育才學校共有4800名學生,請根據(jù)樣本估計全校最喜愛《朗讀者》的人數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,二次函數(shù)y=ax2+bx+c的圖象與x軸分別交于A、B兩點,與y軸交于點C.若tanABC=3,一元二次方程ax2+bx+c=0的兩根為﹣8、2

1)求二次函數(shù)的解析式;

2)直線l繞點AAB為起始位置順時針旋轉(zhuǎn)到AC位置停止,l與線段BC交于點D,PAD的中點.

①求點P的運動路程;

②如圖2,過點DDE垂直x軸于點E,作DFAC所在直線于點F,連結(jié)PE、PF,在l運動過程中,∠EPF的大小是否改變?請說明理由;

3)在(2)的條件下,連結(jié)EF,求PEF周長的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某草莓種植大戶,今年從草莓上市到銷售完需要20天,售價為15元/千克,成本y(元/千克)與第x天成一次函數(shù)關系,當x=10時,y=7,當x=15時,y=6.5

1)求成本y(元/千克)與第x天的函數(shù)關系式并寫出自變量x的取值范圍;

2)求第幾天每千克的利潤w(元)最大?最大利潤是多少?(利潤=售價-成本)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了把巴城建成省級文明城市,特在每個紅綠燈處設置了文明監(jiān)督崗,文明勸導員老張某天在市中心的一十字路口,對闖紅燈的人數(shù)進行統(tǒng)計.根據(jù)上午7001200中各時間段(以1小時為一個時間段),對闖紅燈的人數(shù)制作了如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖,但均不完整.請你根據(jù)統(tǒng)計圖解答下列問題:

1)問這一天上午7001200這一時間段共有多少人闖紅燈?

2)請你把條形統(tǒng)計圖補充完整,并求出扇形統(tǒng)計圖中910點,1011點所對應的圓心角的度數(shù).

3)求這一天上午7001200這一時間段中,各時間段闖紅燈的人數(shù)的眾數(shù)和中位數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形OABC的一邊OAx軸的負半軸上,O是坐標原點,tan∠AOC=,反比例函數(shù)y=的圖象經(jīng)過點C,與AB交于點D,若COD的面積為20,則k的值等于_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)軸上,數(shù)所對應的點與原點的距離叫做數(shù)的絕對值,記作

提出問題:(1)點所表示的數(shù)如圖所示,則兩點間的距離是 兩點間的距離是_____,兩點間的距離是

探究結(jié)論:(2)在數(shù)軸上,若兩點對應的數(shù)分別是,則____ (用含有的式子表示)

拓展應用:(3)請利用.上述結(jié)論,解決下列問題:

在數(shù)軸上對應的點之間的距離為

③滿足的未知數(shù)的值為

查看答案和解析>>

同步練習冊答案