【題目】如圖,把矩形ABCD沿EF翻折,點(diǎn)B恰好落在AD邊的B′處,若AE=2,DE=6,∠EFB=60°,則矩形ABCD的面積是( )
A.12
B.24
C.12
D.16
【答案】D
【解析】解:在矩形ABCD中,
∵AD∥BC,
∴∠DEF=∠EFB=60°,
∵把矩形ABCD沿EF翻折點(diǎn)B恰好落在AD邊的B′處,
∴∠DEF=∠EFB=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E=2,
AB=A′B′,
在△EFB′中,
∵∠DEF=∠EFB=∠EB′F=60°
∴△EFB′是等邊三角形,
Rt△A′EB′中,
∵∠A′B′E=90°﹣60°=30°,
∴B′E=2A′E,而A′E=2,
∴B′E=4,
∴A′B′=2 ,即AB=2 ,
∵AE=2,DE=6,
∴AD=AE+DE=2+6=8,
∴矩形ABCD的面積=ABAD=2 ×8=16 .
故選D.
解:在矩形ABCD中根據(jù)AD∥BC得出∠DEF=∠EFB=60°,由于把矩形ABCD沿EF翻折點(diǎn)B恰好落在AD邊的B′處,
所以∠EFB=∠DEF=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E=2,AB=A′B′,
在△EFB′中可知∠DEF=∠EFB=∠EB′F=60°故△EFB′是等邊三角形,由此可得出∠A′B′E=90°﹣60°=30°,根據(jù)直角三角形的性質(zhì)得出A′B′=AB=2 ,然后根據(jù)矩形的面積公式列式計(jì)算即可得解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線 (a為常數(shù),且a>0)與x軸從左至右依次交于A,B兩點(diǎn),與y軸交于點(diǎn)C,經(jīng)過(guò)點(diǎn)B的直線與拋物線的另一交點(diǎn)為D,且點(diǎn)D的橫坐標(biāo)為﹣5.
(1)求拋物線的函數(shù)表達(dá)式;
(2)P為直線BD下方的拋物線上的一點(diǎn),連接PD、PB, 求△PBD面積的最大值.
(3)設(shè)F為線段BD上一點(diǎn)(不含端點(diǎn)),連接AF,一動(dòng)點(diǎn)M從點(diǎn)A出發(fā),沿線段AF以每秒1個(gè)單位的速度運(yùn)動(dòng)到F,再沿線段FD以每秒2個(gè)單位的速度運(yùn)動(dòng)到D后停止,當(dāng)點(diǎn)F的坐標(biāo)是多少時(shí),點(diǎn)M在整個(gè)運(yùn)動(dòng)過(guò)程中用時(shí)最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】當(dāng)x=2時(shí),代數(shù)式ax-2x的值為4,當(dāng)x=-2時(shí),這個(gè)代數(shù)式的值為( )
A. -8B. -4C. -2D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】出租車司機(jī)小傅某天下午營(yíng)運(yùn)全是在東西走向的大道上行駛的,如果規(guī)定向東為正,行車?yán)锍蹋▎挝唬簁m)如下:
+11, -2, +3, +9, -11, +5, -15, -8
(1)當(dāng)把最后一名乘客送到目的地時(shí),小傅距離出車地點(diǎn)的距離為多少?
(2)若每千米的營(yíng)運(yùn)額為5元,成本為2.7元/km,則這天下午他盈利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(11·柳州)在平面直角坐標(biāo)系中,將點(diǎn)A (-2,1)向左平移2個(gè)單位到點(diǎn)Q,則點(diǎn)Q的坐標(biāo)為
A.(-2,3)B.(0,1)C.(-4,1)D.(-4,-1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)y=﹣3x的圖象沿y軸向上平移2個(gè)單位長(zhǎng)度后,所得圖象對(duì)應(yīng)的函數(shù)關(guān)系式為( )
A.y=﹣3x+2
B.y=﹣3x﹣2
C.y=﹣3(x+2)
D.y=﹣3(x﹣2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知頂點(diǎn)為(﹣3,﹣6)的拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)(﹣1,﹣4),則下列結(jié)論中錯(cuò)誤的是( )
A. b2>4ac
B. ax2+bx+c≥﹣6
C. 若點(diǎn)(﹣2,m),(﹣5,n)在拋物線上,則m>n
D. 關(guān)于x的一元二次方程ax2+bx+c=﹣4的兩根為﹣5和﹣1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com