【題目】如圖,矩形ABCD中,AB=4,BC=2,O為對角線AC的中點,點P、Q分別從A和B兩點同時出發(fā),在邊AB和BC上勻速運動,并且同時到達終點B、C,連接PO、QO并延長分別與CD、DA交于點M、N.在整個運動過程中,圖中陰影部分面積的大小變化情況是( )

A. 一直增大 B. 一直減小 C. 先減小后增大 D. 先增大后減小

【答案】C

【解析】連接OB,根據(jù)點O是為對角線AC的中點可得△ABO和△BOC的面積相等,又點P、Q分別從A和B兩點同時出發(fā),在邊AB和BC上勻速運動,并且同時到達終點B、C,連接PO、QO并延長分別與CD、DA交于點M、N.在整個運動過程中,然后把開始時、結束時、與中點時的△OPQ的面積與△ABC的面積相比即可進行判斷.

解:如圖所示,

連接OB,∵O是AC的中點,
∴S△ABO=S△BOC=S△ABC,
開始時,S△OBP=S△AOB=S△ABC
點P到達AC的中點時,點Q到達BC的中點時,S△OPQ=S△ABC,
結束時,S△OPQ=S△BOC=S△ABC,
所以,圖中陰影部分面積的大小變化情況是:先減小后增大.
故選C.

“點睛“本題考查了動點問題的函數(shù)圖象,根據(jù)題意找出關鍵的開始時,中點時,結束時三個時間點的三角形的面積與△ABC的面積的關系是解題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】2xa,2yb,則2x+y=(

A.a+bB.abC.abD.ba

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】要在一塊長52 m,寬48 m的矩形綠地上,修建同樣寬的兩條互相垂直的甬路,下面分別是小亮和小穎的設計方案.

(1)求小亮設計方案中甬路的寬度x;

(2)求小穎設計方案中四塊綠地的總面積.(友情提示:小穎設計方案中的x與小亮設計方案中的x取值相同)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學課上,老師出了一道題:化簡

[8(a+b)5-4(a+b)4+(-a-b)3]÷[2(a+b)3].

小明同學馬上舉手,下面是小明的解題過程:

[8(a+b)5-4(a+b)4+(-a-b)3]÷[2(a+b)3]

=[8(a+b)5-4(a+b)4+(a+b)3]÷8(a+b)3

=(a+b)2- (a+b)+ .

小亮也舉起了手,說小明的解題過程不對,并指了出來.老師肯定了小亮的回答.你知道小明錯在哪兒嗎?請指出來,并寫出正確解答.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】絕對值不大于2011的所有整數(shù)之和是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】嘉興市某天的最高氣溫為 8℃,最低氣溫為 -1℃,則這天嘉興的最高氣溫與最低氣溫差為(

A.7B.8C.9D.10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知等腰在平面直角坐標系中,頂點軸上,直角頂點軸上,點的坐標為,直線的解析式為

)求直線的函數(shù)解析式.

)如圖,直線軸于,延長至點,使,連結,求證:

)如圖,直線軸于,已知點的坐標為,在直線上是否存在一點,使的面積是面積的,若存在,請求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校準備購進一批節(jié)能燈,已知1只A型節(jié)能燈和3只B型節(jié)能燈共需26元;3只A型節(jié)能燈和2只B型節(jié)能燈共需29元.

(1)求一只A型節(jié)能燈和一只B型節(jié)能燈的售價各是多少元;

(2)學校準備購進這兩種型號的節(jié)能燈共50只,并且A型節(jié)能燈的數(shù)量不多于B型節(jié)能燈數(shù)量的3倍,問A型節(jié)能燈最多可以買多少只?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,AB∥CD,過點DDF⊥BC,垂足為F,DFAC交于點M,已知∠1=∠2.

(1)求證:CM=DM;

(2)FB=FC,求證:AM-MD=2FM.

查看答案和解析>>

同步練習冊答案