【題目】已知在平面直角坐標系中,有兩個二次函數(shù)及圖象,將二次函數(shù)的圖象按下列哪一種平移方式平移后,會使得此兩個函數(shù)圖象的對稱軸重疊( )
A.向左平移2個單位長度B.向右平移2個單位長度C.向左平移10個單位長度 D.向右平移10個單位長度
科目:初中數(shù)學 來源: 題型:
【題目】如圖①所示,已知正方形ABCD和正方形AEFG,連接DG,BE.
(1)發(fā)現(xiàn):當正方形AEFG繞點A旋轉,如圖②所示.
①線段DG與BE之間的數(shù)量關系是 ;
②直線DG與直線BE之間的位置關系是 ;
(2)探究:如圖③所示,若四邊形ABCD與四邊形AEFG都為矩形,且AD=2AB,AG=2AE時,上述結論是否成立,并說明理由.
(3)應用:在(2)的情況下,連接BG、DE,若AE=1,AB=2,求BG2+DE2的值(直接寫出結果).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y=x﹣3與雙曲線y=(k>0)交于A、B兩點,點A的縱坐標為1.
(1)求點B的坐標;
(2)直接寫出當x在什么范圍內時,代數(shù)式x2﹣3x的值小于k的值;
(3)點C(2,m)是直線AB上一點,點D(n,4)是雙曲線y=上一點,將△OCD沿射線BA方向平移,得到△O′C′D′.若點O的對應點O′落在雙曲線y=上,求點D的對應點D′的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,AB是⊙O的弦,⊙O的半徑為10,OE、OF分別交AB于點E、F,OF的延長線交⊙O于點D,且AE=BF,∠EOF=60°.
(1)求證:△OEF是等邊三角形;
(2)當AE=OE時,求陰影部分的面積.(結果保留根號和π)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(題文)如圖,在矩形ABCD中,點E是AD上的一個動點,連接BE,作點A關于BE的對稱點F,且點F落在矩形ABCD的內部,連結AF,BF,EF,過點F作GF⊥AF交AD于點G,設 =n.
(1)求證:AE=GE;
(2)當點F落在AC上時,用含n的代數(shù)式表示的值;
(3)若AD=4AB,且以點F,C,G為頂點的三角形是直角三角形,求n的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某社區(qū)組織了以“奔向幸福,‘毽’步如飛”為主題的踢毽子比賽活動,初賽結束后有甲、乙兩個代表隊進入決賽,已知每隊有5名隊員,按團體總數(shù)排列名次,在規(guī)定時間內每人踢100個以上(含100)為優(yōu)秀.下表是兩隊各隊員的比賽成績.
1 號 | 2 號 | 3 號 | 4 號 | 5 號 | 總數(shù) | |
甲隊 | 103 | 102 | 98 | 100 | 97 | 500 |
乙隊 | 97 | 99 | 100 | 96 | 108 | 500 |
經統(tǒng)計發(fā)現(xiàn)兩隊5名隊員踢毽子的總個數(shù)相等,按照比賽規(guī)則,兩隊獲得并列第一.學習統(tǒng)計知識后,我們可以通過考查數(shù)據(jù)中的其它信息作為參考,進行綜合評定:
(1)甲、乙兩隊的優(yōu)秀率分別為 ;
(2)甲隊比賽數(shù)據(jù)的中位數(shù)為 個;乙隊比賽數(shù)據(jù)的中位數(shù)為 個;
(3)分別計算甲、乙兩隊比賽數(shù)據(jù)的方差;
(4)根據(jù)以上信息,你認為綜合評定哪一個隊的成績好?簡述理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】四位同學在研究函數(shù)(是常數(shù))時,甲發(fā)現(xiàn)當時,函數(shù)有最小值;乙發(fā)現(xiàn)是方程的一個根;丙發(fā)現(xiàn)函數(shù)的最小值為3;丁發(fā)現(xiàn)當時,,已知這四位同學中只有一位發(fā)現(xiàn)的結論是錯誤的,則該同學是( )
A.甲B.乙C.丙D.丁
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例函數(shù)和一次函數(shù)相交于點,.
(1)求一次函數(shù)和反比例函數(shù)解析式;
(2)連接OA,試問在x軸上是否存在點P,使得為以OA為腰的等腰三角形,若存在,直接寫出滿足題意的點P的坐標;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com