【題目】如圖,分別是可活動(dòng)的菱形和平行四邊形學(xué)具,已知平行四邊形較短的邊與菱形的邊長(zhǎng)相等.

(1)在一次數(shù)學(xué)活動(dòng)中,某小組學(xué)生將菱形的一邊與平行四邊形較短邊重合,擺拼成如圖1所示的圖形,經(jīng)過點(diǎn),連接于點(diǎn),觀察發(fā)現(xiàn):點(diǎn)的中點(diǎn).

下面是兩位學(xué)生有代表性的證明思路:

思路1:不需作輔助線,直接證三角形全等;

思路2:不證三角形全等,連接于點(diǎn).、

……

請(qǐng)參考上面的思路,證明點(diǎn)的中點(diǎn)(只需用一種方法證明);

(2)如圖2,在(1)的條件下,當(dāng)時(shí),延長(zhǎng)交于點(diǎn),求的值;

(3)在(2)的條件下,若為大于的常數(shù)),直接用含的代數(shù)式表示的值.

【答案】(1解析;2;3.

【解析】

試題分析:(1)證法一,利用菱形性質(zhì)得AB=CD,ABCD,利用平行四邊形的性質(zhì)得AB=EF,ABEF,則CD=EF,CDEF,再根據(jù)平行線的性質(zhì)得CDM=FEM,則可根據(jù)“AAS”判斷CDM≌△FEM,所以DM=EM;

證法二,利用菱形性質(zhì)得DH=BH,利用平行四邊形的性質(zhì)得AFBE,再根據(jù)平行線分線段成比例定理得到=1,所以DM=EM;

(2)由CDM≌△FEM得到CM=FM,設(shè)AD=a,CM=b,則FM=b,EF=AB=a,再證明四邊形ABCD為正方形得到AC=a,接著證明ANF為等腰直角三角形得到NF=a+b,則NE=NF+EF=2a+b,然后計(jì)算的值;

3)由于,則,然后表示出,再把代入計(jì)算即可.

試題解析:(1)如圖1,

證法一:四邊形ABCD為菱形,AB=CD,ABCD,

四邊形ABEF為平行四邊形,AB=EF,ABEF,

CD=EF,CDEF,∴∠CDM=FEM,在CDM和FEM中

,∴△CDM≌△FEM,DM=EM,即點(diǎn)M是DE的中點(diǎn);

證法二:四邊形ABCD為菱形,DH=BH,

四邊形ABEF為平行四邊形,AFBE,

HMBE,=1,DM=EM,

即點(diǎn)M是DE的中點(diǎn);

(2)∵△CDM≌△FEM,CM=FM,

設(shè)AD=a,CM=b,

∵∠ABE=135°,∴∠BAF=45°,

四邊形ABCD為菱形,∴∠NAF=45°,

四邊形ABCD為正方形,AC=AD=a,

ABEF,∴∠AFN=BAF=45°,

∴△ANF為等腰直角三角形,

NF=AF=a+b+b)=a+b,

NE=NF+EF=a+b+a=2a+b,;

3,,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列4×4網(wǎng)格圖都是由16個(gè)相同小正方形組成,每個(gè)網(wǎng)格圖中有4個(gè)小正方形已涂上陰影,請(qǐng)?jiān)诳瞻仔≌叫沃,按下列要求涂上陰影?/span>

(1)在圖1中選取2個(gè)空白小正方形涂上陰影,使6個(gè)陰影小正方形組成一個(gè)中心對(duì)稱圖形;

(2)在圖2中選取2個(gè)空白小正方形涂上陰影,使6個(gè)陰影小正方形組成一個(gè)軸對(duì)稱圖形,但不是中心對(duì)稱圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一扇窗戶打開后,用窗鉤將其固定,主要運(yùn)用的幾何原理是 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在△ABC中,∠A=60°,BD、CE分別是AC、AB上的高,H是BD、CE的交點(diǎn),則∠BHC=度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a2a2b3,則2a24ab的值為( 。

A.2B.4C.6D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將坐標(biāo)原點(diǎn)沿軸向左平移個(gè)單位長(zhǎng)度得到點(diǎn),過點(diǎn)軸的平行線交反比例函數(shù)的圖象于點(diǎn),.

(1)求反比例函數(shù)的解析式;

(2)若、是該反比例函數(shù)圖象上的兩點(diǎn),且時(shí),,指出點(diǎn)、各位于哪個(gè)象限?并簡(jiǎn)要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化簡(jiǎn)(2x-3)2 -(x+y)(x-y)-y2 =________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】滿足x-5>3x+1的x的最大整數(shù)是( )
A.0
B.-2
C.-3
D.-4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小慧根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)的圖象與性質(zhì)進(jìn)行了研究,下面是小慧的研究過程,請(qǐng)補(bǔ)充完成:

函數(shù)的自變量的取值范圍是

列表,找出的幾組對(duì)應(yīng)值.

其中, ;

在平面直角坐標(biāo)系中,描出以上表中各隊(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),并畫出該函數(shù)的圖象;

寫出該函數(shù)的一條性質(zhì): .

查看答案和解析>>

同步練習(xí)冊(cè)答案