【題目】如圖所示,已知A(, ),B(2, )為反比例函數(shù)y=圖像上的兩點,動點P(x,0)在x軸正半軸上運動,當線段AP與線段BP之差達到最大時,點P的坐標是( )

A. (,0) B. (1,0) C. (,0) D. (,0)

【答案】D

【解析】試題分析:Ay1),B2,y2)代入反比例函數(shù)得:y1=2y2=,

A2),B2, ),

△ABP中,由三角形的三邊關(guān)系定理得:|AP﹣BP|AB,

延長ABx軸于P′,當PP′點時,PA﹣PB=AB,

即此時線段AP與線段BP之差達到最大,

設(shè)直線AB的解析式是y=kx+b,

A、B的坐標代入得: ,

解得:k=﹣1,b=,

直線AB的解析式是y=﹣x+,

y=0時,x=,

P0),

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】到原點的距離不大于3的整數(shù)有

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,BA=BC,以AB為直徑的⊙O分別交ACBC于點D,E,BC的延長線與⊙O的切線AF交于點F

(1)求證:∠ABC=2CAF;

(2)若AC=, ,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形OABC中,AO=10,AB=8,沿直線CD折疊矩形OABC的一邊BC,使點B落在OA邊上的點E處,分別以O(shè)C,OA所在的直線為x軸,y軸建立平面直角坐標系,拋物線y=ax2+bx+c經(jīng)過O,D,C三點.

(1)求AD的長及拋物線的解析式;

(2)一動點P從點E出發(fā),沿EC以每秒2個單位長的速度向點C運動,同時動點Q從點C出發(fā),沿CO以每秒1個單位長的速度向點O運動,當點P運動到點C時,兩點同時停止運動,設(shè)運動時間為t秒,當t為何值時,以P,Q,C為頂點的三角形與ADE相似?

(3)點N在拋物線對稱軸上,點M在拋物線上,是否存在這樣的點M與點N,使以M,N,C,E為頂點的四邊形是平行四邊形?若存在,請直接寫出點M與點N的坐標(不寫求解過程);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形OABC的頂點O在坐標原點,頂點Ax軸上,∠B=120°OA=2,

將菱形OABC繞原點順時針旋轉(zhuǎn)105°OA′B′C′的位置,則點B′的坐標為( )

A. B. , C. -, D. ,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(8分). 目前節(jié)能燈在各城市已基本普及,今年某市面向縣級及農(nóng)村地區(qū)推廣,為響應(yīng)號召,朝陽燈飾商場用了4200元購進甲型和乙型兩種節(jié)能燈.這兩種型號節(jié)能燈的進價、售價如表:

進價(元/只)

售價(元/只)

甲型

25

30

乙型

45

60

特別說明:毛利潤=售價﹣進價

(1)朝陽燈飾商場銷售甲型節(jié)能燈一只毛利潤是  元;

(2)朝陽燈飾商場購買甲,乙兩種節(jié)能燈共100只,其中買了甲型節(jié)能燈多少只?

(3)現(xiàn)在朝陽燈飾商場購進甲型節(jié)能燈m只,銷售完節(jié)能燈時所獲的毛利潤為1080元.求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運算正確的是(

A. x3x3x9B. x8÷x4x2C. ab32ab6D. 2x38x3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個整數(shù)815550…0用科學(xué)記數(shù)法表示為8.1555×1010,則原數(shù)中“0”的個數(shù)為( 。

A. 4 B. 6 C. 7 D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

在數(shù)學(xué)課上,老師提出利用尺規(guī)作圖完成下面問題:

已知:直線l與直線l外一點A。求作:過點A作直線l的平行線。

小明的作法如下:

如圖,

①在直線l上任取兩點B,C;

②以點A為圓心,線段BC的長為半徑作圓弧;以點C為圓心,線段AB的長為半徑作圓弧;兩圓弧(與點A在l同側(cè))的交點為D;

③過點A,D作直線。所以直線AD即為所求。

老師說:“小明的作法正確!

該作圖的依據(jù)是_____________

查看答案和解析>>

同步練習(xí)冊答案