【題目】已知拋物線經過點設點,欲在拋物線的對稱軸上確定一點D,使得的值最大,則D點的坐標是______.
【答案】
【解析】
首先利用待定系數法求得拋物線的解析式,然后可求得拋物線的對稱軸方程x=2,又由作點C關于x=2的對稱點C′,直線AC′與x=3的交點即為D,求得直線AC′的解析式,即可求得答案.
∵拋物線y=x2+bx經過點A(4,0),
∴×42+4b=0,
∴b=-2,
∴拋物線的解析式為:y=x2-2x=(x-2)2-2,
∴拋物線的對稱軸為:直線x=2,
∵點C(1,-4),
∴作點C關于x=2的對稱點C′(3,-4),
直線AC′與x=2的交點即為D,
因為任意取一點D(AC與對稱軸的交點除外)都可以構成一個△ADC.而在三角形中,兩邊之差小于第三邊,即|AD-CD|<AC′.所以最大值就是在D是AC′延長線上的點的時候取到|AD-C′D|=AC′最大,
設直線AC′的解析式為y=kx+b,
∴,
解得:,
∴直線AC′的解析式為y=4x-16,
當x=2時,y=-8,
∴D點的坐標為(2,-8).
故答案為:(2,-8).
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,△ABC的位置如圖所示.
(1)分別寫出△ABC各個頂點的坐標;
(2)分別寫出頂點A關于x軸對稱的點A′的坐標、頂點B關于y軸對稱的點B′的坐標及頂點C關于原點對稱的點C′的坐標;
(3)求線段BC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】足球運動員將足球沿與地面成一定角度的方向踢出,足球飛行的路線是一條拋物線,不考慮空氣阻力,足球距離地面的高度(單位:)與足球被踢出后經過的時間(單位:)之間的關系如下表:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | … | |
0 | 8 | 14 | 18 | 20 | 20 | 18 | 14 | … |
下列結論:①足球距離地面的最大高度為;②足球飛行路線的對稱軸是直線;③足球被踢出時落地;④足球被踢出時,距離地面的高度是.
其中正確結論的個數是( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB的垂直平分線分別交AB、BC于點D、E,AC的垂直平分線分別交AC、BC于點F、G,若∠BAC=100°,則∠EAG=_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,AB的垂直平分線DE分別交AB、AC于D、E.
(1)若AC=12,BC=10,求△EBC的周長;
(2)若∠A=40°,求∠EBC的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC的頂點A在原點,B、C坐標分別為B(3,0),C(2,2),將△ABC向左平移1個單位后再向下平移2單位,可得到△A′B′C′.
(1)請畫出平移后的△ABC的圖形
(2)寫出△A′B′C′各個頂點的坐標;
(3)在x軸上是否存在點P,值,若存在,請寫出P點的坐標,若不存在請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“校園手機”現象越來越受到社會的關注.“寒假”期間,某校小記者隨機調查了某地區(qū)若干名學生和家長對中學生帶手機現象的看法,統(tǒng)計整理并制作了如下的統(tǒng)計圖:
(1)求這次調查的家長人數,并補全圖1;
(2)求圖2中表示家長“贊成”的圓心角的度數;
(3)已知某地區(qū)共6500名家長,估計其中反對中學生帶手機的大約有多少名家長?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線與x軸交于A、B兩點,其中點A的坐標為,拋物線的頂點為P.
求b的值,并求出點P、B的坐標;
在x軸下方的拋物線上是否存在點M,使≌?如果存在,請直接寫出點M的坐標;如果不存在,試說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,OC是∠AOB的角平分線,P是OC上一點.PD⊥OA交OA于D,PE⊥OB交OB于E,F是OC上的另一點,連接DF,EF.求證:DF=EF.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com