【題目】如圖,ABC是等邊三角形,點(diǎn)D是線(xiàn)段AC上的一動(dòng)點(diǎn),EBC的延長(zhǎng)線(xiàn)上,且BDDE

(1)如圖,若點(diǎn)D為線(xiàn)段AC的中點(diǎn),求證:ADCE;

(2)如圖,若點(diǎn)D為線(xiàn)段AC上任意一點(diǎn),求證:ADCE.

【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.

【解析】

(1)根據(jù)等邊三角形三線(xiàn)合一的性質(zhì)即可求得∠DBC的度數(shù),根據(jù)BD=DE即可解題;
(2)作DF∥AB,可證△BDF△EDC,可得BF=CE,再證AD=BF即可解題.

(1)∵點(diǎn)D為等邊三角形△ABCAC的中點(diǎn),

BD平分∠ABC,AD=DC

∴∠DBE=30°,

BD=DE,

∴∠E=DBE=30°,

∵∠DCE=180°-ACB=120°,

∴∠CDE=180°-120°-30°=30°,

∴∠CDE=E =30°DC=CE

AD=CE;………………4

(2)作DFAB,可得△DFC是等邊三角形,∴DC=CF

AC-DC=BC-CF AD=BF

在△BDF和△EDC中,

∴△BDF≌△EDC,(AAS)

BF=CE,

AD=CE.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,⊙P的圓心是(2,a)(a>2),半徑為2,函數(shù)y=x的圖象被⊙P截得的弦AB的長(zhǎng)為 ,則a的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將矩形紙片ABCD沿EF折疊,使點(diǎn)B與CD的中點(diǎn)重合,若AB=2,BC=3,則△FCB′與△B′DG的面積之比為(

A.9:4
B.3:2
C.4:3
D.16:9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將△ABC繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)50°后得到△A′B′C′.若∠A=40°.∠B′=110°,則∠BCA′的度數(shù)是(

A.110°
B.80°
C.40°
D.30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)條件求二次函數(shù)的解析式
(1)二次函數(shù)y=ax2+bx+c的對(duì)稱(chēng)軸為x=3,最小值為﹣2,且過(guò)(0,1)點(diǎn).
(2)拋物線(xiàn)過(guò)(﹣1,0),(3,0),(1,﹣5)三點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一座隧道的截面由拋物線(xiàn)和長(zhǎng)方形構(gòu)成,長(zhǎng)方形的長(zhǎng)為8m,寬為2m,隧道最高點(diǎn)P位于A(yíng)B的中央且距地面6m,建立如圖所示的坐標(biāo)系:

(1)求拋物線(xiàn)的解析式;
(2)一輛貨車(chē)高4m,寬2m,能否從該隧道內(nèi)通過(guò),為什么?
(3)如果隧道內(nèi)設(shè)雙行道,那么這輛貨車(chē)是否可以順利通過(guò),為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形網(wǎng)格中,△ABC各頂點(diǎn)都在格點(diǎn)上,點(diǎn)A,C的坐標(biāo)分別為(﹣5,1)、(﹣1,4),結(jié)合所給的平面直角坐標(biāo)系解答下列問(wèn)題:

(1)①畫(huà)出△ABC關(guān)于y軸對(duì)稱(chēng)的△A1B1C1;
②畫(huà)出△ABC關(guān)于原點(diǎn)O對(duì)稱(chēng)的△A2B2C2;
(2)點(diǎn)C1的坐標(biāo)是;點(diǎn)C2的坐標(biāo)是;
(3)試判斷:△A1B1C1與△A2B2C2是否關(guān)于x軸對(duì)稱(chēng)?(只需寫(xiě)出判斷結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程
(1)x2﹣4x+1=0
(2)3(x﹣2)2=x(x﹣2).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】【問(wèn)題提出】 學(xué)習(xí)了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我們繼續(xù)對(duì)“兩個(gè)三角形滿(mǎn)足兩邊和其中一邊的對(duì)角對(duì)應(yīng)相等”的情形進(jìn)行研究.
【初步思考】
我們不妨將問(wèn)題用符號(hào)語(yǔ)言表示為:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,對(duì)∠B進(jìn)行分類(lèi),可分為“∠B是直角、鈍角、銳角”三種情況進(jìn)行探究.

【深入探究】
第一種情況:當(dāng)∠B是直角時(shí),△ABC≌△DEF.
(1)如圖①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根據(jù) , 可以知道Rt△ABC≌Rt△DEF. 第二種情況:當(dāng)∠B是鈍角時(shí),△ABC≌△DEF.
(2)如圖②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是鈍角,求證:△ABC≌△DEF. 第三種情況:當(dāng)∠B是銳角時(shí),△ABC和△DEF不一定全等.
(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,請(qǐng)你用尺規(guī)在圖③中作出△DEF,使△DEF和△ABC不全等.(不寫(xiě)作法,保留作圖痕跡)
(4)∠B還要滿(mǎn)足什么條件,就可以使△ABC≌△DEF?請(qǐng)直接寫(xiě)出結(jié)論:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,若 , 則△ABC≌△DEF.

查看答案和解析>>

同步練習(xí)冊(cè)答案