【題目】如圖,在RtABC中,∠ABC90°,AB6,BC8,∠BAC,∠ACB的平分線相交于點E,過點EEFBCAC于點F,則EF的長為(

A.B.C.D.

【答案】C

【解析】

延長FEAB于點D,作EGBC、作EHAC,由EFBC可證四邊形BDEG是矩形,由角平分線可得ED=EH=EG、∠DAE=HAE,從而知四邊形BDEG是正方形,再證△DAE≌△HAE、△CGE≌△CHEAD=AHCG=CH,設(shè)BD=BG=x,則AD=AH=6-x、CG=CH=8-x,由AC=10可得x=2,即BD=DE=2、AD=4,再證△ADF∽△ABC可得DF=,據(jù)此得出EF=DF-DE=.

解:如圖,延長FEAB于點D,作EGBC于點G,作EHAC于點H,

EFBC、∠ABC=90°,
FDAB
EGBC,
∴四邊形BDEG是矩形,
AE平分∠BACCE平分∠ACB,
ED=EH=EG,∠DAE=HAE,
∴四邊形BDEG是正方形,
在△DAE和△HAE中,

,

∴△DAE≌△HAEAAS),
AD=AH
同理△CGE≌△CHE,
CG=CH
設(shè)BD=BG=x,則AD=AH=6-x、CG=CH=8-x,
AC=,

6-x+8-x=10,
解得:x=2,
BD=DE=2AD=4,
DFBC,
∴△ADF∽△ABC,

,即,

解得:DF=,

EF=DF-DE=-2=,

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某籃球隊5名場上隊員的身高(單位:cm)是:183、187、190200、210,現(xiàn)用一名身高為195cm的隊員換下場上身高為210 cm的隊員,與換人前相比,場上隊員的身高 (   )

A.平均數(shù)變大,方差變大B.平均數(shù)變小,方差變小

C.平均數(shù)變大,方差變小D.平均數(shù)變小,方差變大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】課題:兩個重疊的正多邊形,其中的一個繞某一頂點旋轉(zhuǎn)所形成的有關(guān)問題.

實驗與論證:

設(shè)旋轉(zhuǎn)角∠A1A0B1α(α<∠A1A0A2),θ3θ4、θ5、θ6所表示的角如圖所示.

(1)用含α的式子表示角的度數(shù):θ3   ,θ4   ,θ5   

(2)1﹣圖4中,連接A0H時,在不添加其他輔助線的情況下,是否存在與直線A0H垂直且被它平分的線段?若存在,請選擇其中的一個圖給出證明;若不存在,請說明理由;

歸納與猜想:

設(shè)正n邊形A0A1A2An1與正n邊形A0B1B2Bn1重合(其中,A1B1重合),現(xiàn)將正多邊形A0B1B2Bn1繞頂點A0逆時針旋轉(zhuǎn)α(0°α°);

(3)設(shè)θn與上述“θ3、θ4、…”的意義一樣,請直接寫出θn的度數(shù);

(4)試猜想在正n邊形的情形下,是否存在與直線A0H垂直且被它平分的線段?若存在,請將這條線段用相應(yīng)的頂點字母表示出來(不要求證明);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解學(xué)生對世博禮儀的知曉程度,從全校1200名學(xué)生中隨機抽取了50名學(xué)生進行測試.根據(jù)測試成績(成績?nèi)≌麛?shù),滿分為100分)作了統(tǒng)計分析,繪制成頻數(shù)分布直方圖(如圖,其中部分數(shù)據(jù)缺失).又知90分以上(含90分)的人數(shù)比60~70分(含60分,不含70分)的人數(shù)的2倍還多3人.請你根據(jù)上述信息,解答下列問題:

1)該統(tǒng)計分析的樣本是(

A.1200名學(xué)生;

B.被抽取的50名學(xué)生;

C.被抽取的50名學(xué)生的問卷成績;

D.50

2)被測學(xué)生中,成績不低于90分的有多少人?

3)測試成績的中位數(shù)所在的范圍是 ;

4)如果把測試成績不低于80分記為優(yōu)良,試估計該校有多少名學(xué)生對世博禮儀的知曉程度達到優(yōu)良;

5)學(xué)校準備從這50名學(xué)生中,以測試成績不低于90分為標準,隨機選3人義務(wù)宣傳世博禮儀,若小杰的得分是93分,那么小杰被選上的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,點DAB上,點EAC延長線上,且BDCE,連接DEBC于點F,作DHBC于點H,連接CD.若tanDFH,SBCD18,則DE的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,一艘漁船正在港口A的正東方向40海里的B處進行捕魚作業(yè),突然接到通知,要該船前往C島運送一批物資到A港,已知C島在A港的北偏東60°方向,且在B的北偏西45°方向.問該船從B處出發(fā),以平均每小時20海里的速度行駛,需要多少時間才能把這批物資送到A(精確到1小時)(該船在C島停留半個小時)?,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,菱形 ABCO 的一邊 OA x 軸上,,反比例函數(shù)過菱形的頂點 C AB 邊上的中點E,則k的值為_______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,對于點Pxy),若點Q的坐標為(x,|xy|),則稱點Q為點P的“關(guān)聯(lián)點”.

1)請直接寫出點(2,2)的“關(guān)聯(lián)點”的坐標;

2)如果點P在函數(shù)yx1的圖象上,其“關(guān)聯(lián)點”Q與點P重合,求點P的坐標;

3)如果點Mm,n)的“關(guān)聯(lián)點”N在函數(shù)yx2的圖象上,當0m2時,求線段MN的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一名在校大學(xué)生利用“互聯(lián)網(wǎng)+”自主創(chuàng)業(yè),銷售一種產(chǎn)品,這種產(chǎn)品的成本價10元/件,已知銷售價不低于成本價,且物價部門規(guī)定這種產(chǎn)品的銷售價不高于16元/件,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量(件與銷售價(元/件)之間的函數(shù)關(guān)系如圖所示.

(1)求之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

(2)求每天的銷售利潤W(元與銷售價(元/件)之間的函數(shù)關(guān)系式,并求出每件銷售價為多少元時,每天的銷售利潤最大?最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案