【題目】如圖,拋物線y=ax2﹣5ax+c與坐標(biāo)軸分別交于點(diǎn)A,C,E三點(diǎn),其中A(﹣3,0),C(0,4),點(diǎn)Bx軸上,AC=BC,過(guò)點(diǎn)BBDx軸交拋物線于點(diǎn)D,點(diǎn)M,N分別是線段CO,BC上的動(dòng)點(diǎn),且CM=BN,連接MN,AM,AN.

(1)求拋物線的解析式及點(diǎn)D的坐標(biāo);

(2)當(dāng)CMN是直角三角形時(shí),求點(diǎn)M的坐標(biāo);

(3)試求出AM+AN的最小值.

【答案】(1)拋物線解析式為y=﹣x2+x+4;D點(diǎn)坐標(biāo)為(3,5);(2)M點(diǎn)的坐標(biāo)為(0,)或(0,);(3)AM+AN的最小值為

【解析】1)利用待定系數(shù)法求拋物線解析式;利用等腰三角形的性質(zhì)得B(3,0),然后計(jì)算自變量為3所對(duì)應(yīng)的二次函數(shù)值可得到D點(diǎn)坐標(biāo);

(2)利用勾股定理計(jì)算出BC=5,設(shè)M(0,m),則BN=4﹣m,CN=5﹣(4﹣m)=m+1,由于∠MCN=OCB,根據(jù)相似三角形的判定方法,當(dāng)時(shí),CMN∽△COB,于是有∠CMN=COB=90°,即;當(dāng)時(shí),CMN∽△CBO,于是有∠CNM=COB=90°,即,然后分別求出m的值即可得到M點(diǎn)的坐標(biāo);

(3)連接DN,AD,如圖,先證明ACM≌△DBN,則AM=DN,所以AM+AN=DN+AN,利用三角形三邊的關(guān)系得到DN+AN≥AD(當(dāng)且僅當(dāng)點(diǎn)A、N、D共線時(shí)取等號(hào)),然后計(jì)算出AD即可.

1)把A(﹣3,0),C(0,4)代入y=ax2﹣5ax+c,解得,

∴拋物線解析式為y=﹣x2+x+4;

AC=BC,COAB,

OB=OA=3,

B(3,0),

BDx軸交拋物線于點(diǎn)D,

D點(diǎn)的橫坐標(biāo)為3,

當(dāng)x=3時(shí),y=﹣×9+×3+4=5,

D點(diǎn)坐標(biāo)為(3,5);

(2)在RtOBC中,BC==5,

設(shè)M(0,m),則BN=4﹣m,CN=5﹣(4﹣m)=m+1,

∵∠MCN=OCB,

∴當(dāng)時(shí),△CMN∽△COB,則∠CMN=COB=90°,

,解得m=,此時(shí)M點(diǎn)坐標(biāo)為(0,);

當(dāng)時(shí),△CMN∽△CBO,則∠CNM=COB=90°,

,解得m=,此時(shí)M點(diǎn)坐標(biāo)為(0,);

綜上所述,M點(diǎn)的坐標(biāo)為(0,)或(0,);

(3)連接DN,AD,如圖,

AC=BC,COAB,

OC平分∠ACB,

∴∠ACO=BCO,

BDOC,

∴∠BCO=DBC,

DB=BC=AC=5,CM=BN,

∴△ACM≌△DBN,

AM=DN,

AM+AN=DN+AN,

DN+AN≥AD(當(dāng)且僅當(dāng)點(diǎn)A、N、D共線時(shí)取等號(hào)),

DN+AN的最小值=,

AM+AN的最小值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】黃巖島是我國(guó)南沙群島的一個(gè)小島,漁產(chǎn)豐富.一天某漁船離開(kāi)港口前往該海域捕魚(yú).捕撈一段時(shí)間后,發(fā)現(xiàn)一外國(guó)艦艇進(jìn)入我國(guó)水域向黃巖島駛來(lái),漁船向漁政部門報(bào)告,并。立即返航.漁政船接到報(bào)告后,立即從該港口出發(fā)趕往黃巖島.下圖是漁政船及漁船與港口的距離s和漁船離開(kāi)港口的時(shí)間t之間的函數(shù)圖象.(假設(shè)漁船與漁政船沿同一航線航行)

(1)直接寫出漁船離開(kāi)港口的距離s和漁船離開(kāi)港口的時(shí)間t之間的函數(shù)關(guān)系式

(2)求漁船與漁政船相遇對(duì),兩船與黃巖島的距離、

(3在漁政船駛往黃巖的過(guò)程中,求漁船從港口 出發(fā)經(jīng)過(guò)多長(zhǎng)時(shí)間與漁政船相距30海里?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知數(shù)軸上點(diǎn)表示的數(shù)為,點(diǎn)表示的數(shù)為是數(shù)軸上一點(diǎn),且,動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒.

(1)數(shù)軸上點(diǎn)表示的數(shù)為 ,并用含的代數(shù)式表示點(diǎn)所表示的數(shù)為 ;

(2)設(shè)的中點(diǎn),的中點(diǎn),點(diǎn)在運(yùn)動(dòng)過(guò)程中,線段的長(zhǎng)度是否發(fā)生變化?若變化,請(qǐng)說(shuō)明理由,若不變,求線段的長(zhǎng)度;

(3)動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),動(dòng)點(diǎn)從點(diǎn)出發(fā),以點(diǎn)每秒個(gè)單位長(zhǎng)度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),若三點(diǎn)同時(shí)出發(fā),在運(yùn)動(dòng)過(guò)程中,的距離,距離中,是否會(huì)有這兩段距離相等的時(shí)候?若有,請(qǐng)求出此時(shí)的值;若沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列等式:

ab)(a+b)=a2b2

ab)(a2+ab+b2)=a3b3

ab)(a3+a2b+ab2+b3)=a4b4

利用你的發(fā)現(xiàn)的規(guī)律解決下列問(wèn)題

1)(ab)(a4+a3b+a2b2+ab3+b4)=   (直接填空);

2)(ab)(an1+an2b+an3b2…+abn2+bn1)=   (直接填空);

3)利用(2)中得出的結(jié)論求62019+62018+…+62+6+1的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,AEBC,AFCD,垂足分別為E,F(xiàn),且BE=DF.

(1)求證:ABCD是菱形;

(2)若AB=5,AC=6,求ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,點(diǎn)P在線段AB外,且PA=PB,求證:點(diǎn)P在線段AB的垂直平分線上,在證明該結(jié)論時(shí),需添加輔助線,則作法不正確的是( 。

A. 作∠APB的平分線PCAB于點(diǎn)C

B. 過(guò)點(diǎn)PPCAB于點(diǎn)CAC=BC

C. AB中點(diǎn)C,連接PC

D. 過(guò)點(diǎn)PPCAB,垂足為C

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某一出租車一天下午以鼓樓為出發(fā)點(diǎn)在東西方向運(yùn)營(yíng),向東走為正,向西走為負(fù),行車?yán)锍蹋▎挝唬?/span>km)依先后次序記錄如下:.

1)將最后一名乘客送到目的地,出租車離鼓樓出發(fā)點(diǎn)多遠(yuǎn)?在鼓樓的什么方向?

2)若每千米的價(jià)格為2.4元,司機(jī)一個(gè)下午的營(yíng)業(yè)額是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)有理數(shù)、在數(shù)軸上的對(duì)應(yīng)點(diǎn)如圖所示,化簡(jiǎn)代數(shù)式:

2)哈市某垃圾處理場(chǎng)一周處理生活垃圾任務(wù)為210噸,計(jì)劃每天處理30噸,由于各種原因,實(shí)際每天處理量與計(jì)劃相比有出入,某周七天的實(shí)際處理情況記錄如下:

+6-3;+4-1;+2-5;0

垃圾場(chǎng)這一周實(shí)際處理生活垃圾是多少噸?

若該垃圾場(chǎng)實(shí)行計(jì)量工資,每處理一噸生活垃圾給300元,同時(shí)又規(guī)定超額處理一噸垃圾另外獎(jiǎng)100元,完不成任務(wù)的少處理一噸另外扣100元,那么該場(chǎng)工人這一周的工資總額是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】幸福是奮斗出來(lái)的,在數(shù)軸上,若CA的距離剛好是3,則C點(diǎn)叫做A幸福點(diǎn),若CA、B的距離之和為6,則C叫做A、B幸福中心

(1)如圖1,點(diǎn)A表示的數(shù)為﹣1,則A的幸福點(diǎn)C所表示的數(shù)應(yīng)該是   ;

(2)如圖2,M、N為數(shù)軸上兩點(diǎn),點(diǎn)M所表示的數(shù)為4,點(diǎn)N所表示的數(shù)為﹣2,點(diǎn)C就是M、N的幸福中心,則C所表示的數(shù)可以是   (填一個(gè)即可);

(3)如圖3,A、B、P為數(shù)軸上三點(diǎn),點(diǎn)A所表示的數(shù)為﹣1,點(diǎn)B所表示的數(shù)為4,點(diǎn)P所表示的數(shù)為8,現(xiàn)有一只電子螞蟻從點(diǎn)P出發(fā),以2個(gè)單位每秒的速度向左運(yùn)動(dòng),當(dāng)經(jīng)過(guò)多少秒時(shí),電子螞蟻是AB的幸福中心?

查看答案和解析>>

同步練習(xí)冊(cè)答案