【題目】如圖,在等邊分別是邊上的點(diǎn),且 , ,點(diǎn)與點(diǎn)關(guān)于對(duì)稱,連接,.

(1)連接,則之間的數(shù)量關(guān)系是

(2)若,求的大小(用的式子表示)

(2)用等式表示線段之間的數(shù)量關(guān)系,并證明.

【答案】(1);(2)(3)

【解析】分析: 1)連接,,易證是等邊三角形,則根據(jù)點(diǎn)與點(diǎn)關(guān)于對(duì)稱,則根據(jù)等量代換可知;

(2)根據(jù),求出.因?yàn)辄c(diǎn)與點(diǎn)關(guān)于對(duì)稱,得到,..,,在以為圓心,為半徑的圓上.根據(jù)圓周角定理有.

3.理由如下連接,延長(zhǎng),交于點(diǎn),證明

得到.根據(jù),即可得到.

1

(2)如圖:

是等邊三角形,

.

.

∵點(diǎn)與點(diǎn)關(guān)于對(duì)稱,

,.

.

由(1)知.

,,在以為圓心,為半徑的圓上.

.

3.理由如下:

連接,延長(zhǎng),交于點(diǎn),

是等邊三角形,

,.

∵點(diǎn)與點(diǎn)關(guān)于對(duì)稱,

,.

.

.

設(shè)

.

.

.

.

由(2)知.

.

,.

四邊形中,.

.

是等邊三角形.

.

,

.

中,

.

.

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1是小明制作的一副弓箭,點(diǎn)A,D分別是弓臂BAC與弓弦BC的中點(diǎn),弓弦BC=60cm.沿AD方向拉弓的過(guò)程中,假設(shè)弓臂BAC始終保持圓弧形,弓弦不伸長(zhǎng).如圖2,當(dāng)弓箭從自然狀態(tài)的點(diǎn)D拉到點(diǎn)D1時(shí),有AD1=30cm,B1D1C1=120°.

(1)圖2中,弓臂兩端B1,C1的距離為_____cm.

(2)如圖3,將弓箭繼續(xù)拉到點(diǎn)D2,使弓臂B2AC2為半圓,則D1D2的長(zhǎng)為_____cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形ABCD中,對(duì)角線BD所在的直線上有兩點(diǎn)E、F滿足BE=DF,連接AE、AF、CE、CF,如圖所示

(1)求證:△ABE≌△ADF;

(2)試判斷四邊形AECF的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,反比例函數(shù)y=(x<0)的圖象經(jīng)過(guò)點(diǎn)A(﹣2,2),過(guò)點(diǎn)AABy軸,垂足為B,在y軸的正半軸上取一點(diǎn)P(0,t),過(guò)點(diǎn)P作直線OA的垂線l,以直線l為對(duì)稱軸,點(diǎn)B經(jīng)軸對(duì)稱變換得到的點(diǎn)B′在此反比例函數(shù)的圖象上,則t的值是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線l:y=(x﹣h)2﹣4(h為常數(shù))

(1)如圖1,當(dāng)拋物線l恰好經(jīng)過(guò)點(diǎn)P(1,﹣4)時(shí),lx軸從左到右的交點(diǎn)為A、B,與y軸交于點(diǎn)C.

①求l的解析式,并寫(xiě)出l的對(duì)稱軸及頂點(diǎn)坐標(biāo).

②在l上是否存在點(diǎn)D,使SABD=SABC , 若存在,請(qǐng)求出D點(diǎn)坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

③點(diǎn)Ml上任意一點(diǎn),過(guò)點(diǎn)MME垂直y軸于點(diǎn)E,交直線BC于點(diǎn)D,過(guò)點(diǎn)Dx軸的垂線,垂足為F,連接EF,當(dāng)線段EF的長(zhǎng)度最短時(shí),求出點(diǎn)M的坐標(biāo).

(2)設(shè)l與雙曲線y=有個(gè)交點(diǎn)橫坐標(biāo)為x0且滿足3≤x0≤5,通過(guò)l位置隨h變化的過(guò)程,直接寫(xiě)出h的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,ABAC5,cos∠ABC,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn),得到△A1B1C

1)如圖,當(dāng)點(diǎn)B1在線段BA延長(zhǎng)線上時(shí).求證:BB1∥CA1△AB1C的面積;

2)如圖,點(diǎn)EBC邊的中點(diǎn),點(diǎn)F為線段AB上的動(dòng)點(diǎn),在△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)過(guò)程中,點(diǎn)F的對(duì)應(yīng)點(diǎn)是F1,求線段EF1長(zhǎng)度的最大值與最小值的差.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,菱形ABCD中,AB=5cm,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿折線BC﹣CD﹣DA運(yùn)動(dòng)到點(diǎn)A停止,動(dòng)點(diǎn)Q從點(diǎn)A出發(fā),沿線段AB運(yùn)動(dòng)到點(diǎn)B停止,它們運(yùn)動(dòng)的速度相同,設(shè)點(diǎn)P出發(fā)xs時(shí),△BPQ的面積為ycm2 , 已知yx之間的函數(shù)關(guān)系如圖②所示,其中OM,MN為線段,曲線NK為拋物線的一部分,請(qǐng)根據(jù)圖中的信息,解答下列問(wèn)題:

(1)當(dāng)1<x<2時(shí),△BPQ的面積________(填不變”);

(2)分別求出線段OM,曲線NK所對(duì)應(yīng)的函數(shù)表達(dá)式;

(3)當(dāng)x為何值時(shí),△BPQ的面積是5cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2017浙江省嘉興市,第20題,8分)如圖,一次函數(shù))與反比例函數(shù)的圖象交于點(diǎn)A(﹣1,2),Bm,﹣1).

(1)求這兩個(gè)函數(shù)的表達(dá)式;

(2)在x軸上是否存在點(diǎn)Pn,0)(n>0),使ABP為等腰三角形?若存在,求n的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一手機(jī)經(jīng)銷商計(jì)劃購(gòu)進(jìn)華為品牌型、型、型三款手機(jī)共部,每款手機(jī)至少要購(gòu)進(jìn)部,且恰好用完購(gòu)機(jī)款61000.設(shè)購(gòu)進(jìn)型手機(jī)部,型手機(jī).三款手機(jī)的進(jìn)價(jià)和預(yù)售價(jià)如下表:

手機(jī)型號(hào)

進(jìn)價(jià)(單位:元/部)

預(yù)售價(jià)(單位:元/部)

1)求出之間的函數(shù)關(guān)系式;

2)假設(shè)所購(gòu)進(jìn)手機(jī)全部售出,綜合考慮各種因素,該手機(jī)經(jīng)銷商在購(gòu)銷這批手機(jī)過(guò)程中需另外支出各種費(fèi)用共1500元.

①求出預(yù)估利潤(rùn)W(元)與x(部)之間的關(guān)系式;

(注;預(yù)估利潤(rùn)W=預(yù)售總額購(gòu)機(jī)款各種費(fèi)用)

②求出預(yù)估利潤(rùn)的最大值,并寫(xiě)出此時(shí)購(gòu)進(jìn)三款手機(jī)各多少部.

查看答案和解析>>

同步練習(xí)冊(cè)答案