【題目】如圖,已知∠MON=25°,矩形ABCD的邊BC在OM上,對角線AC⊥ON.
(1)求∠ACD度數(shù);
(2)當(dāng)AC=5時,求AD的長.(參考數(shù)據(jù):sin25°=0.42;cos25°=0.91;tan25°=0.47,結(jié)果精確到0.1)
【答案】(1) 25°;(2)2.1.
【解析】試題分析:(1)延長AC交ON于點E,如圖,利用互余計算出∠OCE=65°,再利用對頂角相等得到∠ACB=∠OCE=65°,再根據(jù)∠ACD=90°-∠ACB即可解決問題;
(2)接著在Rt△ABC中利用∠ACB的余弦可計算出BC,然后根據(jù)矩形的性質(zhì)即可得到AD的長.
試題解析:(1)延長AC交ON于點E,如圖,
∵AC⊥ON,
∴∠OEC=90°,
在Rt△OEC中,
∵∠O=25°,
∴∠OCE=65°,
∴∠ACB=∠OCE=65°,
∴∠ACD=90°﹣∠ACB=25°
(2)∵四邊形ABCD是矩形,
∴∠ABC=90°,AD=BC,
在Rt△ABC中,∵cos∠ACB=,
∴BC=ACcos65°=5×0.42=2.1,
∴AD=BC=2.1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx﹣2的圖象與反比例函數(shù)的圖象交于A、B兩點,過A作AC⊥x軸于點C.已知cos∠AOC=,OA=.
(1)求反比例函數(shù)及直線AB的解析式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線與x軸交于A、B兩點(點A在點B左側(cè)),與y軸交于C點,點E在第一象限且四邊形ACBE為矩形.
(1)求∠BCE的度數(shù);
(2)如圖2,F(xiàn)為線段BC上一動點,P為第四象限內(nèi)拋物線上一點,連接CP、FP、BP、EF,M,N分別是線段CP,F(xiàn)P的中點,連接MN,當(dāng)△BCP面積最大,且MN+EF最小時,求PF的長度;
(3)如圖3,將△AOC繞點O順時針旋轉(zhuǎn)一個角度α(0°<α<180°),點A,C的對應(yīng)點分別為A',C',直線A'C'與x軸交于點G,G在x軸正半軸上且OG=.線段KH在直線A'C'上平移( K在H左邊),且KH=5,△KHC是否能成為等腰三角形?若能,請求出所有符合條件的點K的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在中,AB=AC,∠ABC =,D是BC邊上一點,以AD為邊作,使AE=AD,+=180°.
(1)直接寫出∠ADE的度數(shù)(用含的式子表示);
(2)以AB,AE為邊作平行四邊形ABFE,
①如圖2,若點F恰好落在DE上,求證:BD=CD;
②如圖3,若點F恰好落在BC上,求證:BD=CF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)形結(jié)合是重要的數(shù)學(xué)思想方法之一,數(shù)形結(jié)合具體地說就是將抽象數(shù)學(xué)語言與直觀圖形結(jié)合起來,使抽象思維與形象思維結(jié)合起來,通過“數(shù)”與“形”之間的對應(yīng)和轉(zhuǎn)變來解決數(shù)學(xué)問題。數(shù)軸是數(shù)形結(jié)合的最基礎(chǔ)圖形,是連接數(shù)與形的橋梁之一,請解決下面的問題:
(1)如圖1,點B表示的數(shù)是1,則點A表示的數(shù)是 .
(2)如果點M表示數(shù)-2,將點M向右移動6個單位長度到達終點N,那么終點N表示的數(shù)是4,此時M、N兩點間的距離是 .
(3)若∣x-0∣意義表示數(shù)x到原點的距離,則∣x-3∣的意義表示數(shù)x到3的距離;類似的式子∣x+3∣=4,則x= .
(4)由(3)可知,一般地,如果點A表示數(shù)為a,點B表示的數(shù)b,則A、B兩點間的距離表示為 .
(5)如圖2,數(shù)軸上的兩個點A、B所表示的數(shù)分別是a,b,點O為原點。在a+b,a-b,∣a∣-∣b∣這三個運算結(jié)果中,是正數(shù)的有 個.
(6)利用數(shù)軸直接寫出∣x-2∣+∣x+5∣的最小值= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程m x2-(m+2)x+2=0(m≠0).
(1)求證:無論m為何值時,這個方程總有兩個實數(shù)根;
(2)若方程的兩個實數(shù)根都是整數(shù),求正整數(shù)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形的頂點、分別在、軸的正半軸上,點在反比例函數(shù)的第一象限內(nèi)的圖像上,,,動點在軸的上方,且滿足.
(1)若點在這個反比例函數(shù)的圖像上,求點的坐標(biāo);
(2)連接、,求的最小值;
(3)若點是平面內(nèi)一點,使得以、、、為頂點的四邊形是菱形,則請你直接寫出滿足條件的所有點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,△ABC中,AC=BC,∠A=30°,點D在AB邊上且∠ADC=45°.
(1)求∠BCD的度數(shù);
(2)將圖①中的△BCD繞點B順時針旋轉(zhuǎn),得到△BC′D′.當(dāng)點D′恰好落在BC邊上時,如圖②所示,連接C′C并延長交AB于點E.
①求∠C′CB的度數(shù);
②求證:△C′BD′≌△CAE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點在數(shù)軸上分別表示有理數(shù),兩點間的距離表示為.且.
(1)數(shù)軸上表示2和5的兩點之間的距離是___,
數(shù)軸上表示2和5的兩點之間的距離是___,
數(shù)軸上表示1和3的兩點之間的距離是___;
(2)數(shù)軸上表示x和1的兩點A和B之間的距離是___,如果|AB|=2,那么x=___;
(3)當(dāng)代數(shù)式|x+1|+|x2|取最小值時,相應(yīng)x的取值范圍是___.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com