【題目】如圖A、BC、P四點(diǎn)均在邊長為1的小正方形網(wǎng)格格點(diǎn)上

(1)判斷PBAABC是否相似并說明理由;

(2)BAC的度數(shù)

【答案】(1)相似;(2)135°.

【解析】試題分析:(1)△PBA與△ABC相似,利用勾股定理計算出AB的長利用兩邊對應(yīng)成比例且一個夾角對應(yīng)相等的兩個三角形相似可證明結(jié)論成立;

(2)由(1)可知:∠BAC=∠BPA因?yàn)椤?/span>BPA易求問題得解.

試題解析:(1)△PBAABC相似理由如下

AB=,BC=5,BP=1,∴.∵∠PBA=∠ABC,∴△PBA∽△ABC

(2)∵△PBA∽△ABC,∴∠BAC=∠BPA.∵∠BPA=90°+45°=135°,∴∠BAC=135°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各句判定矩形的說法對角線相等的四邊形是矩形;對角線互相平分且相等的四邊形是矩形;有一個角是直角的四邊形是矩形;有四個角是直角的四邊形是矩形;四個角都相等的四邊形是矩形;對角線相等,且有一個角是直角的四邊形是矩形;是正確有幾個

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C、D在⊙O上,點(diǎn)E在⊙O外,∠EAC=D=60°

1)求∠ABC的度數(shù);

2)求證:AE是⊙O的切線;

3)當(dāng)BC=4時,求劣弧AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一方有難八方支援,某市政府籌集抗旱必需物資120噸打算運(yùn)往災(zāi)區(qū),現(xiàn)有甲、乙、丙三種車型可供選擇,每輛車的運(yùn)載能力和運(yùn)費(fèi)如下表所示:(假設(shè)每輛車均滿載)

(1)若全部物資都用甲、乙兩種車來運(yùn)送,需運(yùn)費(fèi)8200元,則分別需甲、乙兩種車各幾輛?

(2)為了節(jié)約運(yùn)費(fèi),該市政府共調(diào)用16輛甲、乙,丙三種車都參與運(yùn)送物資,試求出有幾種運(yùn)送方案,哪種方案的運(yùn)費(fèi)最?其費(fèi)用是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解同學(xué)們每月零花錢數(shù)額,校園小記者隨機(jī)調(diào)查了本校部分學(xué)生,并根據(jù)調(diào)查結(jié)果繪制出如下不完整的統(tǒng)計圖表:

零花錢數(shù)額

人數(shù)(頻數(shù))

頻率

6

0.15

12

0.30

16

0.40

0.10

2

請根據(jù)以下圖表,解答下列問題:

1)這次被調(diào)查的人數(shù)共有__________人,__________;

2)計算并補(bǔ)全頻數(shù)分布直方圖;

3)請估計該校1500名學(xué)生中每月零花錢數(shù)額低于90的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB90°,BC的垂直平分線DEBCD,交ABE,FDE上,并且AFCE

1)求證:四邊形ACEF是平行四邊形;

2)當(dāng)∠B的大小滿足什么條件時,四邊形ACEF是菱形?請回答并證明你的結(jié)論;

3)四邊形ACEF有可能是正方形嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一個坡角為30°的斜坡上有一電線桿AB,當(dāng)太陽光與水平線成45°角時,測得該桿在斜坡上的影長BC20m.求電線桿AB的高(精確到0.1m,參考數(shù)值:≈1.73,≈1.41).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中,為銳角,點(diǎn)為射線上一點(diǎn),聯(lián)結(jié),以為一邊且在的右側(cè)作正方形

(1)如果,,

①當(dāng)點(diǎn)在線段上時(與點(diǎn)不重合),如圖2,線段所在直線的位置關(guān)系為 ,線段的數(shù)量關(guān)系為 ;

②當(dāng)點(diǎn)在線段的延長線上時,如圖3,①中的結(jié)論是否仍然成立,并說明理由;

(2)如果,是銳角,點(diǎn)在線段上,當(dāng)滿足什么條件時,(點(diǎn)不重合),并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為準(zhǔn)備參加某市2019年度中小學(xué)生機(jī)器人競賽,學(xué)校對甲、乙兩支機(jī)器人制作小隊所創(chuàng)作的機(jī)器人分別從創(chuàng)意、設(shè)計、編程與制作三方面進(jìn)行量化,各項量化滿分100分,根據(jù)量化結(jié)果擇優(yōu)推薦.它們?nèi)椓炕梅秩缦卤恚?/span>

量化項目

量化得分

甲隊

乙隊

創(chuàng)意

85

72

設(shè)計

70

66

編程與制作

64

84

1)如果根據(jù)三項量化的平均分擇優(yōu)推薦,哪隊將被推薦參賽?

2)根據(jù)本次中小學(xué)生機(jī)器人競賽的主題要求,如果學(xué)校根據(jù)創(chuàng)意、設(shè)計、編程與制作三項量化得分按的比例確定每隊最后得分的平均分擇優(yōu)推薦,哪隊將被推薦參賽?并對另外一隊提出合理化的建議.

查看答案和解析>>

同步練習(xí)冊答案