【題目】如圖所示,在中,AB>AC,AD是中線,AE是角平分線,CF⊥AE于點(diǎn)F,連接DF,則①DF//AB;②∠DAE=(∠ACB-∠ABC);③DF= (AB-AC);④ (AB-AC)<AD< (AB+AC).其中正確的是__________.
【答案】①③④
【解析】
延長CF交AB于點(diǎn)H,證明F是CH的中點(diǎn),再根據(jù)中位線的性質(zhì)即可判斷①和③;延長AD到M使得AD=DM,證明△ADC≌△MDB可得BM=AC,再利用三角形的三邊關(guān)系即可判斷④.
延長CF交AB于點(diǎn)H
∵AE是∠BAC的角平分線,CF⊥AE
∴△ACH是等腰三角形,F是CH的中點(diǎn)
又AD是△ABC的中線
∴點(diǎn)D是BC的中點(diǎn)
∴DF∥AB,故①正確;
無法得出∠DAE=(∠ACB-∠ABC),故②錯(cuò)誤;
∵DF是△CBG的中位線
∴DF=BG=(AB-AG)=(AB-AC),故③正確;
延長AD到M使得AD=DM
在△ADC和△MDB中
∴△ADC≌△MDB
∴BM=AC
∵AB-BM<AM<AB+BM
∴AB-AC<AM<AB+AC
∴ (AB-AC)<AD< (AB+AC),故④正確;
故答案選擇①③④.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中考英語聽力測試期間T需要杜絕考點(diǎn)周圍的噪音.如圖,點(diǎn)A是某市一中考考點(diǎn),在位于考點(diǎn)南偏西15°方向距離500米的C點(diǎn)處有一消防隊(duì).在聽力考試期間,消防隊(duì)突然接到報(bào)警電話,消防車需沿北偏東75°方向的公路CF前往救援.已知消防車的警報(bào)聲傳播半徑為400米,若消防車的警報(bào)聲對聽力測試造成影響,則消防車必須改道行駛.試問:消防車是否需要改道行駛?
說明理由.(≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】勾股定理揭示了直角三角形三邊之間的關(guān)系,其中蘊(yùn)含著豐富的科學(xué)知識和人文價(jià)值.如圖所示,是一棵由正方形和含角的直角三角形按一定規(guī)律長成的勾股樹,樹的主干自下而上第一個(gè)正方形和第一個(gè)直角三角形的面積之和為,第二個(gè)正方形和第二個(gè)直角三角形的面積之和為,…,第個(gè)正方形和第個(gè)直角三角形的面積之和為.
設(shè)第一個(gè)正方形的邊長為1.
請解答下列問題:
(1)______.
(2)通過探究,用含的代數(shù)式表示,則______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,若將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)180°得到△EFC,連接AF、BE.
(1)求證:四邊形ABEF是平行四邊形;
(2)當(dāng)∠ABC為多少度時(shí),四邊形ABEF為矩形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知拋物線y=ax2+bx+c的圖像經(jīng)過點(diǎn)A(0,3)、B(1,0),其對稱軸為直線l:x=2,過點(diǎn)A作AC∥x軸交拋物線于點(diǎn)C,∠AOB的平分線交線段AC于點(diǎn)E,點(diǎn)P是拋物線上的一個(gè)動(dòng)點(diǎn),設(shè)其橫坐標(biāo)為m.
(1)求拋物線的解析式;
(2)若動(dòng)點(diǎn)P在直線OE下方的拋物線上,連結(jié)PE、PO,當(dāng)m為何值時(shí),四邊形AOPE面積最大,并求出其最大值;
(3)如圖②,F(xiàn)是拋物線的對稱軸l上的一點(diǎn),在拋物線上是否存在點(diǎn)P使△POF成為以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若存在,直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與軸交于、兩點(diǎn),與軸交于點(diǎn),其頂點(diǎn)為,連接、、,過點(diǎn)作軸的垂線.
(1)求點(diǎn),的坐標(biāo);
(2)直線上是否存在點(diǎn),使的面積等于的面積的倍?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個(gè)工程隊(duì)計(jì)劃修建一條長15千米的鄉(xiāng)村公路,已知甲工程隊(duì)每天比乙工程隊(duì)每天多修路0.5千米,乙工程隊(duì)單獨(dú)完成修路任務(wù)所需天數(shù)是甲工程隊(duì)單獨(dú)完成修路任務(wù)所需天數(shù)的1.5倍.
(1)求甲、乙兩個(gè)工程隊(duì)每天各修路多少千米?
(2)若甲工程隊(duì)每天的修路費(fèi)用為0.5萬元,乙工程隊(duì)每天的修路費(fèi)用為0.4萬元,要使兩個(gè)工程隊(duì)修路總費(fèi)用不超過5.2萬元,甲工程隊(duì)至少修路多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于鈍角β,定義它的三角函數(shù)值如下:
sinβ=sin(180°﹣β),cosβ=﹣cos(180°﹣β),tanβ=﹣tan(180°﹣β).
(1)求sin120°,cos135°,tan150°的值;
(2)若一個(gè)三角形的三個(gè)內(nèi)角的比是1:1:4,A,B是這個(gè)三角形的兩個(gè)頂點(diǎn),sinA,cosB是方程ax2﹣bx﹣1=0的兩個(gè)不相等的實(shí)數(shù)根,求a、b的值及∠A和∠B的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+m與y=nx﹣5n(n≠0)的交點(diǎn)的橫坐標(biāo)為3,則關(guān)于x的不等式x+m>nx﹣5n>0的整數(shù)解為( )
A.3B.4C.5D.6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com