【題目】如圖,在△ABC中,AE平分∠BACBC于點E,DAB邊上一動點,連接CDAE于點P,連接BP.已知AB =6cm,設(shè)B,D兩點間的距離為xcm,BP兩點間的距離為y1cm,A,P兩點間的距離為y2cm

小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,分別對函數(shù)y1,y2隨自變量x的變化而變化的規(guī)律進行了探究.

下面是小明的探究過程,請補充完整:

1)按照下表中自變量x的值進行取點、畫圖、測量,分別得到了y1,x的幾組對應(yīng)值:

x/cm

0

1

2

3

4

5

6

y1/cm

2.49

2.64

2.88

3.25

3.80

4.65

6.00

y2/cm

4.59

4.24

3.80

3.25

2.51

0.00

2)在同一平面直角坐標(biāo)系xOy中,描出補全后的表中各組數(shù)值所對應(yīng)的點(xy1),(x),并畫出函數(shù)y1,的圖象;

3)結(jié)合函數(shù)圖象,回答下列問題:

①當(dāng)AP=2BD時,AP的長度約為 cm;

②當(dāng)BP平分∠ABC時,BD的長度約為 cm

【答案】11.5;(2)詳見解析;(3)答案不唯一,如:①3.86;②3

【解析】

1)用光滑的曲線連接y2圖象現(xiàn)有的點,在圖象上,測量出x=5時,y的值即可;
2)描點連線即可繪出函數(shù)圖象;
3)①當(dāng)AP=2BD時,即y2=2x,在圖象上畫出直線y=2x,該圖象與y2的交點即為所求;
②從表格數(shù)據(jù)看,當(dāng)x=3時,y1=y2=3.25,故當(dāng)BP平分∠ABC時,此時點P是△ABC的內(nèi)心,故點DAB的中點,即可求解.

解:(1)根據(jù)測量結(jié)果得到:

x/cm

0

1

2

3

4

5

6

y1/cm

2.49

2.64

2.88

3.25

3.80

4.65

6.00

y2/cm

4.59

4.24

3.80

3.25

2.51

1.5

0.00


2)畫出函數(shù)的圖象;

3)①當(dāng)AP=2BD時,即y2=2x,
在圖象上畫出直線y=2x,該圖象與y2的交點即為所求,即圖中空心點所示,

空心點的縱坐標(biāo)為3.86,
②從表格數(shù)據(jù)看,當(dāng)x=3時,y1=y2=3.25,
即點DAB中點時,y1=y2,即此時點PAB的中垂線上,則點CAB的中垂線上,則△ABC為等腰三角形,
故當(dāng)BP平分∠ABC時,此時點P是△ABC的內(nèi)心,故點DAB的中點,

故答案可以為:①3.86;②3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校組織學(xué)生開展義務(wù)植樹活動,在活動結(jié)束后隨機調(diào)查了40名學(xué)生每人植樹的棵數(shù),根據(jù)調(diào)查獲取的樣本數(shù)據(jù),制作了條形統(tǒng)計圖和扇形統(tǒng)計圖.請根據(jù)相關(guān)信息,解答下列問題:

1)扇形圖中的值是_________

2)求隨機調(diào)查的40名學(xué)生每人植樹棵數(shù)這組數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

3)若本次活動九年級共有300名學(xué)生參加,估計植樹超過6棵(不含6棵)的學(xué)生約有多少人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某開發(fā)商原計劃對樓盤新房以每平方米4000元的銷售價對外銷售.現(xiàn)為了加快資金周轉(zhuǎn),對銷售價經(jīng)過兩次下調(diào)后,決定在開盤之日以每平方米3240元的銷售價進行促銷.

1)求銷售價平均每次下調(diào)的百分率;

2)開盤之日,開發(fā)商又給予以下兩種優(yōu)惠方案以供選擇:方案①一次性送裝修費每平方米50元;方案②打9.8折銷售.張先生要購買一套100平方米的住房,試問哪種方案更優(yōu)惠?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AE平分∠BACBC于點EDAB邊上一動點,連接CDAE于點P,連接BP.已知AB =6cm,設(shè)BD兩點間的距離為xcm,B,P兩點間的距離為y1cm,A,P兩點間的距離為y2cm

小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,分別對函數(shù)y1y2隨自變量x的變化而變化的規(guī)律進行了探究.

下面是小明的探究過程,請補充完整:

1)按照下表中自變量x的值進行取點、畫圖、測量,分別得到了y1,x的幾組對應(yīng)值:

x/cm

0

1

2

3

4

5

6

y1/cm

2.49

2.64

2.88

3.25

3.80

4.65

6.00

y2/cm

4.59

4.24

3.80

3.25

2.51

0.00

2)在同一平面直角坐標(biāo)系xOy中,描出補全后的表中各組數(shù)值所對應(yīng)的點(x,y1),(x),并畫出函數(shù)y1,的圖象;

3)結(jié)合函數(shù)圖象,回答下列問題:

①當(dāng)AP=2BD時,AP的長度約為 cm

②當(dāng)BP平分∠ABC時,BD的長度約為 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某調(diào)查機構(gòu)對某地互聯(lián)網(wǎng)行業(yè)從業(yè)情況進行調(diào)查統(tǒng)計,得到當(dāng)?shù)鼗ヂ?lián)網(wǎng)行業(yè)從業(yè)人員年齡分布統(tǒng)計圖和當(dāng)?shù)?/span>90后從事互聯(lián)網(wǎng)行業(yè)崗位分布統(tǒng)計圖:

互聯(lián)網(wǎng)行業(yè)從業(yè)人員年齡分布統(tǒng)計圖 90后從事互聯(lián)網(wǎng)行業(yè)崗位分布圖

對于以下四種說法,你認(rèn)為正確的是_____ (寫出全部正確說法的序號)

①在當(dāng)?shù)鼗ヂ?lián)網(wǎng)行業(yè)從業(yè)人員中,90后人數(shù)占總?cè)藬?shù)的一半以上

②在當(dāng)?shù)鼗ヂ?lián)網(wǎng)行業(yè)從業(yè)人員中,80前人數(shù)占總?cè)藬?shù)的13%

③在當(dāng)?shù)鼗ヂ?lián)網(wǎng)行業(yè)中,從事技術(shù)崗位的90后人數(shù)超過總?cè)藬?shù)的20%

④在當(dāng)?shù)鼗ヂ?lián)網(wǎng)行業(yè)中,從事設(shè)計崗位的90后人數(shù)比80前人數(shù)少

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,AB=2AD=4,對角線ACBD相交于點O,且EF,G,H分別是AO,BOCO,DO的中點,則下列說法正確的是(

A.EH=HGB.四邊形EFGH是平行四邊形

C.ACBDD.的面積是的面積的2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,,垂足分別為,,的中點,于點.下列結(jié)論:①;②垂直平分;③;④;⑤.其中正確的是( )

A.①②③B.①③⑤C.①②④D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】工匠制作某種金屬工具要進行材料煅燒和鍛造兩個工序,即需要將材料燒到800℃,然后停止煅燒進行鍛造操作,經(jīng)過時,材料溫度降為600℃.如圖,煅燒時溫度與時間成一次函敷關(guān)系:鍛造時,溫度與時間成反比例函數(shù)關(guān)系。已知該材料初始溫度是32℃.

1)分別求出材料煅燒和鍛造時的函數(shù)關(guān)系式,并且寫出自變量的取值范圍;

2)根據(jù)工藝要求,當(dāng)材料溫度低于400℃時,須停止操作.那么鍛造的操作時間最多有多長?.

3)如果加工每個零件需要鍛造12分鐘,并且當(dāng)材料溫度低于400℃時,需要重新煅燒.通過計算說明加工第一個零件,一共需要多少分鐘.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,,將矩形對折,得到折痕;沿著折疊,的對應(yīng)點為的交點為;再沿著折疊,使得重合,折痕為,此時點的對應(yīng)點為.下列結(jié)論:是直角三角形:②點在同一條直線上;;;⑤點的外心,其中正確的個數(shù)為(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案