【題目】如圖,已知Rt△ABC中,∠ACB=90°,AC=6,BC=4,將△ABC繞直角頂點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到△DEC.若點(diǎn)F是DE的中點(diǎn),連接AF,則AF=( )
A.4
B.5
C.4
D.6
【答案】B
【解析】如圖所示:取CE的中點(diǎn)G,連接FG.
由旋轉(zhuǎn)的性質(zhì)可知:CE=BC=4,CD=AC=6,
∴AE=2,GE=2.
∴AG=4.
∵點(diǎn)G為CE的中,點(diǎn)F為ED的中點(diǎn),
∴GF= CD=3,GF∥CD.
又∵CD⊥AC,
∴FG⊥AC.
在Rt△AGF中,依據(jù)勾股定理可知AF= =5.
所以答案是:B.
【考點(diǎn)精析】通過靈活運(yùn)用勾股定理的概念和旋轉(zhuǎn)的性質(zhì),掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;①旋轉(zhuǎn)后對(duì)應(yīng)的線段長(zhǎng)短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對(duì)應(yīng)的點(diǎn)到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】細(xì)心觀察圖,認(rèn)真分析各式,然后解答問題:
;
;
;
(1)請(qǐng)用含(為正整數(shù))的等式表示上述交化規(guī)律:______;
(2)觀察總結(jié)得出結(jié)論:直角三角形兩條直角邊與斜邊的關(guān)系,用一句話概括為:______;
(3)利用上面的結(jié)論及規(guī)律,請(qǐng)?jiān)趫D中作出等于的長(zhǎng)度;
(4)若表示三角形面積,,,,計(jì)算出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠C=90°,D為AB的中點(diǎn),E、F分別在AC、BC上,且DE⊥DF.
求證:AE2+BF2=EF2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,和都是直角.
如圖1,如果,求的度數(shù);
找出圖1中相等的銳角,并說明相等的理由;
在圖2中,利用三角板畫一個(gè)與相等的角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.
求證:AF平分∠BAC.
【答案】證明見解析.
【解析】試題分析:先根據(jù)AB=AC,可得∠ABC=∠ACB,再由垂直,可得90°的角,在△BCE和△BCD中,利用內(nèi)角和為180°,可分別求∠BCE和∠DBC,利用等量減等量差相等,可得FB=FC,再易證△ABF≌△ACF,從而證出AF平分∠BAC.
試題解析:證明:∵AB=AC(已知),
∴∠ABC=∠ACB(等邊對(duì)等角).
∵BD、CE分別是高,
∴BD⊥AC,CE⊥AB(高的定義).
∴∠CEB=∠BDC=90°.
∴∠ECB=90°∠ABC,∠DBC=90°∠ACB.
∴∠ECB=∠DBC(等量代換).
∴FB=FC(等角對(duì)等邊),
在△ABF和△ACF中,
,
∴△ABF≌△ACF(SSS),
∴∠BAF=∠CAF(全等三角形對(duì)應(yīng)角相等),
∴AF平分∠BAC.
【題型】解答題
【結(jié)束】
23
【題目】如圖,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分線,DE⊥AB,垂足為E.
(1)求證:CD=BE;
(2)已知CD=2,求AC的長(zhǎng);
(3)求證:AB=AC+CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下面一列有序數(shù)對(duì):(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,按這些規(guī)律,第50個(gè)有序數(shù)對(duì)是( )
A. (3,8)B. (4,7)C. (5,6)D. (6,5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將一塊含角的三角板ABO的一邊BO放在直線MN上,AB邊在直線MN的上方,其中,另一塊含角的三角板POQ的一邊OQ在直線MN上,另一邊OP在直線MN的下方.
現(xiàn)將圖1中的三角板POQ繞點(diǎn)O按順時(shí)針方向旋轉(zhuǎn),當(dāng)直線MN恰好為的平分線時(shí),如圖2所示,則的度數(shù)______度;
繼續(xù)將圖2中的三角板繞點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)至圖3的位置,使得邊OA落在的內(nèi)部,且AO恰好為的平分線時(shí),求的度數(shù);
在上述直角三角板從圖1按順時(shí)針方向旋轉(zhuǎn)至圖位置為止,這個(gè)過程中,若三角板POQ繞點(diǎn)O以每秒的速度勻速旋轉(zhuǎn),當(dāng)三角板POQ的OP邊或OQ邊所在直線平分,則求此時(shí)三角板POQ繞點(diǎn)O旋轉(zhuǎn)的時(shí)間t的值請(qǐng)直接寫出答案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的頂點(diǎn)B在原點(diǎn)O,直角邊BC在x軸的正半軸上,∠ACB=90°,點(diǎn)A的坐標(biāo)為(3, ),點(diǎn)D是BC邊上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)B,C重合),過點(diǎn)D作DE⊥BC交AB邊于點(diǎn)E,將∠ABC沿直線DE翻折,點(diǎn)B落在x軸上的點(diǎn)F處當(dāng)△AEF為直角三角形時(shí),點(diǎn)F的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一塊直角三角板放置在銳角上,使得該三角板的兩條直角邊恰好分別經(jīng)過點(diǎn)
(1)如圖①,若時(shí),點(diǎn)在內(nèi),則 度,____度, 度;
(2)如圖②,改變直角三角板的位置,使點(diǎn)在內(nèi),請(qǐng)?zhí)骄?/span>與之間存在怎樣的數(shù)量關(guān)系,并驗(yàn)證你的結(jié)論;
(3)如圖③,改變直角三角板的位置,使點(diǎn)在外,且在邊的左側(cè),直接寫出三者之間存在的數(shù)量關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com