【題目】在△ABC中,點O是△ABC的內心,連接OB、OC,過點O作EF∥BC分別交AB、AC于點E、F,已知BC=a (a是常數(shù)),設△ABC的周長為y,△AEF的周長為x,在下列圖象中,大致表示y與x之間的函數(shù)關系的是( )

A.
B.
C.
D.

【答案】C
【解析】解:如圖,

∵點O是△ABC的內心,
∴∠1=∠2,
又∵EF∥BC,
∴∠3=∠2,
∴∠1=∠3,
∴EO=EB,
同理可得FO=FC,
∵x=AE+EO+FO+AF,
y=AE+BE+AF+FC+BC,
∴y=x+a,(x>0),
即y是x的一次函數(shù),
所以C選項正確.
故選C.
由于點O是△ABC的內心,根據(jù)內心的性質得到OB、OC分別平分∠ABC、∠ACB,又EF∥BC,可得到∠1=∠3,則EO=EB,同理可得FO=FC,再根據(jù)周長的所以可得到y(tǒng)=x+a,(x>0),即它是一次函數(shù),即可得到正確選項.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】足球比賽規(guī)定:勝一場得3分,平一場得1分,負一場得0分.某足球隊共進行了6場比賽,得了12分,該隊獲勝的場數(shù)可能是( 。
A.1或2
B.2或3
C.3或4
D.4或5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,3×3的方格分為上中下三層,第一層有一枚黑色方塊甲,可在方格A、B、C中移動,第二層有兩枚固定不動的黑色方塊,第三層有一枚黑色方塊乙,可在方格D、E、F中移動,甲、乙移入方格后,四枚黑色方塊構成各種拼圖.

(1)若乙固定在E處,移動甲后黑色方塊構成的拼圖是軸對稱圖形的概率是
(2)若甲、乙均可在本層移動.
①用樹形圖或列表法求出黑色方塊所構拼圖是軸對稱圖形的概率.
②黑色方塊所構拼圖是中心對稱圖形的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知△ABC的三個頂點的坐標分別為A(﹣4,3)、B(﹣3,1)、C(﹣1,3).

(1)請按下列要求畫圖:
①將△ABC先向右平移4個單位長度、再向上平移2個單位長度,得到△A1B1C1 , 畫出△A1B1C1;
②△A2B2C2與△ABC關于原點O成中心對稱,畫出△A2B2C2
(2)在(1)中所得的△A1B1C1和△A2B2C2關于點M成中心對稱,請直接寫出對稱中心M點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知△ABC的三個頂點的坐標分別為A(﹣4,3)、B(﹣3,1)、C(﹣1,3).

(1)請按下列要求畫圖:
①將△ABC先向右平移4個單位長度、再向上平移2個單位長度,得到△A1B1C1 , 畫出△A1B1C1;
②△A2B2C2與△ABC關于原點O成中心對稱,畫出△A2B2C2
(2)在(1)中所得的△A1B1C1和△A2B2C2關于點M成中心對稱,請直接寫出對稱中心M點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖在Rt△ACB中,C為直角頂點,∠ABC=25°,O為斜邊中點.將OA繞著點O逆時針旋轉θ°(0<θ<180)至OP,當△BCP恰為軸對稱圖形時,θ的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線l:y1=2x+4,與y軸交于點A,與x軸交于點B,反比例函數(shù)y2= 與直線l交于點C,且AB=2AC.
(1)求反比例函數(shù)的解析式;
(2)根據(jù)函數(shù)圖象,直接寫出0<y1<y2的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某區(qū)九年級學生身體素質情況,該區(qū)從全區(qū)九年級學生中隨機抽取了部分學生進行了一次體育考試科目測試(把測試結果分為四個等級:A級:優(yōu)秀:B級:良好;C級:及格;D級:不及格),并將測試結果繪成了如圖兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖中的信息解答下列問題:
(1)本次抽樣測試的學生是;
(2)求圖1中∠α的度數(shù)是°,
(3)把圖2條形統(tǒng)計圖補充完整;
(4)該區(qū)九年級有學生3500名,如果全部參加這次體育科目測試,請估計不及格的人數(shù)為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 已知△ABC中,∠A=25°,∠B=40°.
(1)求作:⊙O,使得⊙O經(jīng)過A、C兩點,且圓心O落在AB邊上.(要求尺規(guī)作圖,保留作圖痕跡,不必寫作法)
(2)求證:BC是(1)中所作⊙O的切線.

查看答案和解析>>

同步練習冊答案