【題目】如圖,在菱形ABCD中,邊AB的垂直平分線(xiàn)與對(duì)角線(xiàn)AC相交于點(diǎn)E,∠ABC=140°,那么∠EDC=

【答案】120°
【解析】解:連結(jié)BE, ∵四邊形ABCD是菱形,
∴AB=CB,
∵∠ABC=140°,
∴∠BAC=∠BCA=20°.
又∵有一條直線(xiàn)垂直平分AB,
∴EA=EB,
∴∠BAE=∠EBA=20°,
∴∠EBC=∠ABC﹣∠ABE=140°﹣20°=120°,
又∵△BEC與△CDE關(guān)于AC對(duì)稱(chēng),
∴∠EDC=∠EBC=120°.
所以答案是:120°.

【考點(diǎn)精析】關(guān)于本題考查的線(xiàn)段垂直平分線(xiàn)的性質(zhì)和菱形的性質(zhì),需要了解垂直于一條線(xiàn)段并且平分這條線(xiàn)段的直線(xiàn)是這條線(xiàn)段的垂直平分線(xiàn);線(xiàn)段垂直平分線(xiàn)的性質(zhì)定理:線(xiàn)段垂直平分線(xiàn)上的點(diǎn)和這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等;菱形的四條邊都相等;菱形的對(duì)角線(xiàn)互相垂直,并且每一條對(duì)角線(xiàn)平分一組對(duì)角;菱形被兩條對(duì)角線(xiàn)分成四個(gè)全等的直角三角形;菱形的面積等于兩條對(duì)角線(xiàn)長(zhǎng)的積的一半才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電腦店有A、B兩種型號(hào)的打印機(jī)和C、D、E三種芯片出售.每種型號(hào)的打印機(jī)均需要一種芯片配套才能打印.
(1)下列是該店用樹(shù)形圖或列表設(shè)計(jì)的配套方案,①的位置應(yīng)填寫(xiě) , ②的位置應(yīng) 填寫(xiě)
(2)若僅有B型打印機(jī)與E種芯片不配套,則上面(1)中的方案配套成功率是

芯片
配套方案
打印機(jī)

C

D

E

A

(A,C)

(A,D)

B

(B,C)

(B,D)

(B,E)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,AC是弦.
(1)請(qǐng)你按下面步驟畫(huà)圖(畫(huà)圖或作輔助線(xiàn)時(shí)先使用鉛筆畫(huà)出,確定后必須使用黑色字跡的簽字筆描黑); 第一步,過(guò)點(diǎn)A作∠BAC的角平分線(xiàn),交⊙O于點(diǎn)D;
第二步,過(guò)點(diǎn)D作AC的垂線(xiàn),交AC的延長(zhǎng)線(xiàn)于點(diǎn)E.
第三步,連接BD.
(2)求證:AD2=AEAB;
(3)連接EO,交AD于點(diǎn)F,若5AC=3AB,求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在下列多項(xiàng)式的乘法中,不能用平方差公式計(jì)算的是(  )

A. (a+b)(a-b) B. (x-2y)(-x+2y) C. (x-2y)(-x-2y) D. (x-y)(y+0.5x)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①是一個(gè)長(zhǎng)為2m、寬為2n的長(zhǎng)方形,沿圖中虛線(xiàn)用剪刀將其均勻分成四個(gè)小長(zhǎng)方形,然后按圖②的形狀拼成一個(gè)正方形.

(1)你認(rèn)為圖②中陰影部分的正方形的邊長(zhǎng)等于________;

(2)請(qǐng)你用兩種不同的方法表示圖②中陰影部分的面積,方法一:__________________,方法二:________________;

(3)觀察圖②,你能寫(xiě)出代數(shù)式(m+n)2,(m-n)2,mn之間的關(guān)系嗎?

(4)應(yīng)用:已知m+n=11,mn=28(m>n),求m,n的值.

①  

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】星期天,玲玲騎自行車(chē)到郊外游玩,她離家的距離與時(shí)間的關(guān)系如圖所示,請(qǐng)根據(jù)圖象回答下列問(wèn)題.

(1)玲玲到達(dá)離家最遠(yuǎn)的地方是什么時(shí)間?離家多遠(yuǎn)?

(2)她何時(shí)開(kāi)始第一次休息?休息了多長(zhǎng)時(shí)間?

(3)她騎車(chē)速度最快是在什么時(shí)候?車(chē)速多少?

(4)玲玲全程騎車(chē)的平均速度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC和△ADE均為等邊三角形,BD、CE交于點(diǎn)F.

(1)求證:BD=CE;(2)求銳角∠BFC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在數(shù)軸上點(diǎn)A表示的有理數(shù)為﹣6,點(diǎn)B表示的有理數(shù)為6,點(diǎn)P從點(diǎn)A出發(fā)以每秒4個(gè)單位長(zhǎng)度的速度在數(shù)軸上由AB運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)B后立即返回,仍然以每秒4個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng)至點(diǎn)A停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(單位:秒).

(1)求t=1時(shí)點(diǎn)P表示的有理數(shù);

(2)求點(diǎn)P與點(diǎn)B重合時(shí)的t值;

(3)在點(diǎn)P沿?cái)?shù)軸由點(diǎn)A到點(diǎn)B再回到點(diǎn)A的運(yùn)動(dòng)過(guò)程中,求點(diǎn)P與點(diǎn)A的距離(用含t的代數(shù)式表示);

(4)當(dāng)點(diǎn)P表示的有理數(shù)與原點(diǎn)的距離是2個(gè)單位長(zhǎng)度時(shí),請(qǐng)求出所有滿(mǎn)足條件的t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】仔細(xì)閱讀下列材料.

分?jǐn)?shù)均可化為有限小數(shù)或無(wú)限循環(huán)小數(shù),反之,有限小數(shù)或無(wú)限小數(shù)均可化為分?jǐn)?shù)”.

例如:=1÷4=0.25;==8÷5=1.6;=1÷3=,反之,0.25== ;1.6===.那么怎么化成分?jǐn)?shù)呢?

解:×10=3+, ∴不妨設(shè)=x,則上式變?yōu)?/span>10x=3+x,解得x=,即=

=,設(shè)=x,則上式變?yōu)?/span>100x=2+x,解得x=

==1+x=1+=

將分?jǐn)?shù)化為小數(shù):=______,=_______;

將小數(shù)化為分?jǐn)?shù):=______,=_______;

將小數(shù)化為分?jǐn)?shù),需要寫(xiě)出推理過(guò)程.

查看答案和解析>>

同步練習(xí)冊(cè)答案