【題目】拋物線y=ax2+bx+c(a≠0)對(duì)稱軸為直線x=﹣1,其部分圖象如圖所示,則下列結(jié)論:
①b2﹣4ac>0;
②2a=b;
③t(at+b)≤a﹣b(t為任意實(shí)數(shù));
④3b+2c<0;
⑤點(diǎn)(﹣,y1),(,y2),(,y3)是該拋物線上的點(diǎn),且y1<y3<y2,
其中正確結(jié)論的個(gè)數(shù)是( 。
A.5B.4C.3D.2
【答案】A
【解析】
利用拋物線的開口方向、對(duì)稱軸、頂點(diǎn)坐標(biāo)、最大值(最小值),增減性逐個(gè)進(jìn)行判斷,得出答案.
.解:拋物線與x軸有兩個(gè)不同交點(diǎn),因此b2﹣4ac>0,故①正確;
對(duì)稱軸為x=﹣1,即:﹣,也就是2a=b,故②正確;
當(dāng)x=﹣1時(shí),y最大=a﹣b+c,當(dāng)x=t時(shí),y=at2+bt+c,
∴at2+bt+c≤a﹣b+c,
即:t(at+b)≤a﹣b,故③正確;
由拋物線的對(duì)稱性可知與x軸另一個(gè)交點(diǎn)0<x<1,當(dāng)x=1時(shí),y=a+b+c<0,又2a=b,即a=b,代入得:b+b+c<0,也就是3b+2c<0;因此④正確;
點(diǎn)A(,y1),B(,y2),C(,y3)到對(duì)稱軸x=﹣1的距離分別為LA、LB、LC,
則有LA>LC>LB,且A、B在對(duì)稱軸左側(cè),C在對(duì)稱軸的右側(cè),故y1<y3<y2,因此⑤正確,
綜上所述,正確的結(jié)論有5個(gè),
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究
如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)分別為,點(diǎn)在軸上,其坐標(biāo)為,拋物線經(jīng)過點(diǎn)為第三象限內(nèi)拋物線上一動(dòng)點(diǎn).
求該拋物線的解析式.
連接,過點(diǎn)作軸交于點(diǎn),當(dāng)的周長(zhǎng)最大時(shí),求點(diǎn)的坐標(biāo)和周長(zhǎng)的最大值.
若點(diǎn)為軸上一動(dòng)點(diǎn),點(diǎn)為平面直角坐標(biāo)系內(nèi)一點(diǎn).當(dāng)點(diǎn)構(gòu)成菱形時(shí),請(qǐng)直接寫出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于A(2,1),B(-1,)兩點(diǎn).
(1)求m、k、b的值;
(2)連接OA、OB,計(jì)算三角形OAB的面積;
(3)結(jié)合圖象直接寫出不等式的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】仙桃是遂寧市某地的特色時(shí)令水果.仙桃一上市,水果店的老板用2400元購(gòu)進(jìn)一批仙桃,很快售完;老板又用3700元購(gòu)進(jìn)第二批仙桃,所購(gòu)件數(shù)是第一批的倍,但進(jìn)價(jià)比第一批每件多了5元.
(1)第一批仙桃每件進(jìn)價(jià)是多少元?
(2)老板以每件225元的價(jià)格銷售第二批仙桃,售出80%后,為了盡快售完,剩下的決定打折促銷.要使得第二批仙桃的銷售利潤(rùn)不少于440元,剩余的仙桃每件售價(jià)至少打幾折?(利潤(rùn)=售價(jià)﹣進(jìn)價(jià))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一漁船由西往東航行,在A點(diǎn)測(cè)得海島C位于北偏東60°的方向,前進(jìn)30海里到達(dá)B點(diǎn),此時(shí),測(cè)得海島C位于北偏東30°的方向,求海島C到航線AB的距離CD的長(zhǎng)(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過點(diǎn)A(5,)的拋物線y=ax2+bx的對(duì)稱軸是x=2,點(diǎn)B是拋物線與x軸的一個(gè)交點(diǎn),點(diǎn)C在y軸上,點(diǎn)D是拋物線的頂點(diǎn).
(1)求a、b的值;
(2)當(dāng)△BCD是直角三角形時(shí),求△OBC的面積;
(3)設(shè)點(diǎn)P在直線OA下方且在拋物線y=ax2+bx上,點(diǎn)M、N在拋物線的對(duì)稱軸上(點(diǎn)M在點(diǎn)N的上方),且MN=2,過點(diǎn)P作y軸的平行線交直線OA于點(diǎn)Q,當(dāng)PQ最大時(shí),請(qǐng)直接寫出四邊形BQMN的周長(zhǎng)最小時(shí)點(diǎn)Q、M、N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班“數(shù)學(xué)興趣小組”對(duì)函數(shù)y=x2﹣2|x|的圖象和性質(zhì)進(jìn)行了探究,探究過程如下,請(qǐng)補(bǔ)充完整.(1)自變量x的取值范圍是全體實(shí)數(shù),x與y的幾組對(duì)應(yīng)值列表如下:
x | … | ﹣3 | ﹣ | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … | |
y | … | 3 | m | ﹣1 | 0 | ﹣1 | 0 | 3 | … |
其中,m= .
(2)根據(jù)表中數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),并畫出了函數(shù)圖象的一部分,請(qǐng)畫出該函數(shù)圖象的另一部分.
(3)觀察函數(shù)圖象,寫出兩條函數(shù)的性質(zhì).
(4)進(jìn)一步探究函數(shù)圖象發(fā)現(xiàn):
①函數(shù)圖象與x軸有 個(gè)交點(diǎn),所以對(duì)應(yīng)的方程x2﹣2|x|=0有 個(gè)實(shí)數(shù)根;
②方程x2﹣2|x|=2有 個(gè)實(shí)數(shù)根.
③關(guān)于x的方程x2﹣2|x|=a有4個(gè)實(shí)數(shù)根時(shí),a的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,拋物線的對(duì)稱軸為直線,與軸的一個(gè)交點(diǎn)坐標(biāo)為,其部分圖象如圖所示,下列結(jié)論:
①;
②;
③方程的兩個(gè)根是;
④方程有一個(gè)實(shí)根大于;
⑤當(dāng)時(shí),隨增大而增大.
其中結(jié)論正確的個(gè)數(shù)是( )
A.個(gè)B.個(gè)C.個(gè)D.個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線與軸交于兩點(diǎn),與軸交于點(diǎn).
(1)求此拋物線的表達(dá)式及頂點(diǎn)的坐標(biāo);
(2)若點(diǎn)是軸上方拋物線上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)不重合),過點(diǎn)作軸于點(diǎn),交直線于點(diǎn),連結(jié).設(shè)點(diǎn)的橫坐標(biāo)為.
①試用含的代數(shù)式表示的長(zhǎng);
②直線能否把分成面積之比為1:2的兩部分?若能,請(qǐng)求出點(diǎn)的坐標(biāo);若不能,請(qǐng)說明理由.
(3)如圖2,若點(diǎn)也在此拋物線上,問在軸上是否存在點(diǎn),使?若存在,請(qǐng)直接寫出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com