【題目】如圖,BPABC中∠ABC的平分線,CP是∠ACB的外角的平分線,如果∠ABP=20°,∠ACP=50°,則∠A+P=

A.70°B.80°C.90°D.100°

【答案】C

【解析】

根據(jù)角平分線的定義以及一個三角形的外角等于與它不相鄰的兩個內角和,可求出∠A的度數(shù),根據(jù)補角的定義求出∠ACB的度數(shù),根據(jù)三角形的內角和即可求出∠P的度數(shù),即可求出結果.

解:∵BPABC中∠ABC的平分線,CP是∠ACB的外角的平分線,

∵∠ABP=20°,∠ACP=50°

∴∠ABC=2ABP=40°,∠ACM=2ACP=100°,

∴∠A=ACM-ABC=60°,

ACB=180°-ACM=80°,

∴∠BCP=ACB+ACP=130°

∵∠BPC=20°,

∴∠P=180°-PBC-BCP=30°,

∴∠A+P=90°

故選:C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為了解市民對垃圾分類知識的知曉程度,某數(shù)學學習興趣小組對市民進行隨機抽樣的問卷調查,調查結果分為.非常了解.了解、.基本了解.不太了解四個等級進行統(tǒng)計,并將統(tǒng)計結果繪制成如下兩幅不完整的統(tǒng)計圖(1,2),請根據(jù)圖中的信息解答下列問題.

(1)這次調查的市民人數(shù)為 ,2, ;

(2)補全圖1中的條形統(tǒng)計圖;

(3)在圖2中的扇形統(tǒng)計圖中,.基本了解所在扇形的圓心角度數(shù);

(4)據(jù)統(tǒng)計,2018年該市約有市民500萬人,那么根據(jù)抽樣調查的結果,可估計對垃圾分類知識的知曉程度為.不太了解的市民約有多少萬人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小螞蟻在9×9的小方格上沿著網(wǎng)格線運動(每小格邊長為1),一只螞蟻在C處找到食物后,要通知A、B、D、E處的其他小螞蟻,我們把它的行動規(guī)定:向上或向右為正,向下或向左為負。如果從CD記為:CD(+2,-3)(第一個數(shù)表示左、右方向,第二個數(shù)表示上、下方向),那么;

1CB(   ),CE(   ),D (-4,-3),D ,+3);

2)若這只小螞蟻的行走路線為CEDBAC,請你計算小螞蟻走過的路程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一幅三角板拼成如圖所示的圖形,過點CCF平分∠DCEDE于點F

1)求證:CF∥AB

2)求∠DFC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 閱讀下面的材料

1,在ABC中,試說明∠A+B+C=180°

通過畫平行線,將∠A、∠B、∠C作等量代換,使各角之和恰為一個平角,依輔助線不同而得多種方法:

解:如圖2,延長BC到點D,過點CCEBA

因為BACE(作圖所知)

所以∠B=2,∠A=1(兩直線平行,同位角、內錯角相等)

又因為∠BCD=BCA+2+1=180°(平角的定義)

所以∠A+B+ACB=180°(等量代換)

1)如圖3,過BC上任一點F,作FHACFGAB,這種添加輔助線的方法能說∠A+B+C=180°嗎?并說明理由.

2)還可以過點A作直線MNBC,或在三角形內取點PP作三邊的平行線,請選擇一種方法,畫出相應圖形,并說明∠A+B+C=180°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ADABC的中線,BEABD的中線.

(1)若ABE=15°,BAD=40°,則BED=________°;

(2)請在圖中作出BEDBD邊上的高EF

(3)若ABC的面積為40,BD=5,則點EBC邊的距離為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O是直線AB上一點,OD平分∠BOC,COE90°.

(1)若∠AOC36°,求∠DOE的度數(shù);

(2)若∠AOCα,則∠DOE________.(用含α的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)李飛與劉亮射擊訓練的成績繪制了如圖所示的折線統(tǒng)計圖.

根據(jù)圖所提供的信息,若要推薦一位成績較穩(wěn)定的選手去參賽,應推薦( 。

A. 李飛或劉亮 B. 李飛 C. 劉亮 D. 無法確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為積極響應嘉興市垃圾分類工作的號召,大力倡導低碳生活,保護我們的生存環(huán)境.某校按抽樣規(guī)則抽取了部分學生進行垃圾分類的問卷調查(問卷內容如圖1),答題情況如圖2所示.

(1)參與本次問卷調查的學生共有多少人?

(2)若該校共有800名學生,則估計該校全體學生中對垃圾分類非常清楚(全對”)的人數(shù)有多少?

(3)為講一步提高學生對垃圾分類的認識,學校加大了宣傳,一個月后按同樣的抽樣規(guī)則抽取與第一次樣本容量相等的學生進行第二次垃圾分類的問卷調查,答題情況如圖3所示.求前后兩次調查中答全對人數(shù)的增長率.

查看答案和解析>>

同步練習冊答案