【題目】問(wèn)題的提出:如果點(diǎn)P是銳角內(nèi)一動(dòng)點(diǎn),如何確定一個(gè)位置,使點(diǎn)P到的三頂點(diǎn)的距離之和的值為最小?
問(wèn)題的轉(zhuǎn)化:把繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到,連接,這樣就把確定的最小值的問(wèn)題轉(zhuǎn)化成確定的最小值的問(wèn)題了,請(qǐng)你利用圖1證明:;
問(wèn)題的解決:當(dāng)點(diǎn)P到銳角的三頂點(diǎn)的距離之和的值為最小時(shí),求和的度數(shù);
問(wèn)題的延伸:如圖2是有一個(gè)銳角為的直角三角形,如果斜邊為2,點(diǎn)P是這個(gè)三角形內(nèi)一動(dòng)點(diǎn),請(qǐng)你利用以上方法,求點(diǎn)P到這個(gè)三角形各頂點(diǎn)的距離之和的最小值.
【答案】(1)證明見(jiàn)解析;(2)滿足:時(shí),的值為最小;(3)點(diǎn)P到這個(gè)三角形各頂點(diǎn)的距離之和的最小值為.
【解析】
問(wèn)題的轉(zhuǎn)化:根據(jù)旋轉(zhuǎn)的性質(zhì)證明△APP是等邊三角形,則PP=PA,可得結(jié)論;
問(wèn)題的解決:運(yùn)用類(lèi)比的思想,把繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60度得到,連接,由“問(wèn)題的轉(zhuǎn)化”可知:當(dāng)B、P、P、C在同一直線上時(shí),的值為最小,確定當(dāng):時(shí),滿足三點(diǎn)共線;
問(wèn)題的延伸:如圖3,作輔助線,構(gòu)建直角△ABC,利用勾股定理求AC的長(zhǎng),即是點(diǎn)P到這個(gè)三角形各頂點(diǎn)的距離之和的最小值.
問(wèn)題的轉(zhuǎn)化:
如圖1,
由旋轉(zhuǎn)得:∠PAP=60°,PA=PA,
△APP是等邊三角形,
∴PP=PA,
∵PC=PC,
.
問(wèn)題的解決:
滿足:時(shí),的值為最;
理由是:如圖2,把繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60度得到,連接,
由“問(wèn)題的轉(zhuǎn)化”可知:當(dāng)B、P、P、C在同一直線上時(shí),的值為最小,
,∠APP=60°,
∴∠APB+∠APP=180°,
、P、P在同一直線上,
由旋轉(zhuǎn)得:∠APC=∠APC=120°,
∵∠APP=60°,
∴∠APC+∠A PP=180°,
、P、C在同一直線上,
、P、P、C在同一直線上,
此時(shí)的值為最小,
故答案為:;
問(wèn)題的延伸:
如圖3,中,,,
,,
把繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60度得到,連接,
當(dāng)A、P、P、C在同一直線上時(shí),的值為最小,
由旋轉(zhuǎn)得:BP=BP,∠PBP=60°,PC=PC,BC=BC,
是等邊三角形,
∴PP=PB,
∵∠ABC=∠APB+∠CBP=∠APB+∠CBP=30°,
∴∠ABC=90°,
由勾股定理得:AC=,
∴PA+PB+PC=PA+PP+PC=AC=,
則點(diǎn)P到這個(gè)三角形各頂點(diǎn)的距離之和的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延長(zhǎng)CA至點(diǎn)E,使AE=AC;延長(zhǎng)CB至點(diǎn)F,使BF=BC.連接AD,AF,DF,EF.延長(zhǎng)DB交EF于點(diǎn)N.
(1)求證:AD=AF;
(2)求證:BD=EF;
(3)試判斷四邊形ABNE的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A,B在反比例函數(shù)y= (k>0)的圖象上,AC⊥x軸,BD⊥x軸,垂足C,D分別在x軸的正、負(fù)半軸上,CD=k,已知AB=2AC,E是AB的中點(diǎn),且△BCE的面積是△ADE的面積的2倍,則k的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校組織了一次初三科技小制作比賽,有A、B、C、D四個(gè)班共提供了100件參賽作品.C班提供的參賽作品的獲獎(jiǎng)率為50%,其他幾個(gè)班的參賽作品情況及獲獎(jiǎng)情況繪制在下列圖①和圖②兩幅尚不完整的統(tǒng)計(jì)圖中.
(1)B班參賽作品有多少件?
(2)請(qǐng)你將圖②的統(tǒng)計(jì)圖補(bǔ)充完整;
(3)通過(guò)計(jì)算說(shuō)明,哪個(gè)班的獲獎(jiǎng)率高?
(4)將寫(xiě)有A、B、C、D四個(gè)字母的完全相同的卡片放入箱中,從中一次隨機(jī)抽出兩張卡片,求抽到A、B兩班的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A、B兩點(diǎn),B點(diǎn)坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,﹣3)
(1)求拋物線的解析式;
(2)點(diǎn)P在拋物線位于第四象限的部分上運(yùn)動(dòng),當(dāng)四邊形ABPC的面積最大時(shí),求點(diǎn)P的坐標(biāo)和四邊形ABPC的最大面積.
(3)直線l經(jīng)過(guò)A、C兩點(diǎn),點(diǎn)Q在拋物線位于y軸左側(cè)的部分上運(yùn)動(dòng),直線m經(jīng)過(guò)點(diǎn)B和點(diǎn)Q,是否存在直線m,使得直線l、m與x軸圍成的三角形和直線l、m與y軸圍成的三角形相似?若存在,求出直線m的解析式,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為提倡節(jié)約用水,準(zhǔn)備實(shí)行自來(lái)水“階梯計(jì)費(fèi)”方式,用戶用水不超出基本用水量的部分享受基本價(jià)格,超出基本用水量的部分實(shí)行超價(jià)收費(fèi).為更好地決策,自來(lái)水公司的隨機(jī)抽取了部分用戶的用水量數(shù)據(jù),并繪制了如圖不完整的統(tǒng)計(jì)圖(每組數(shù)據(jù)包括在右端點(diǎn)但不包括左端點(diǎn)),請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問(wèn)題:
(1)此次抽樣調(diào)查的樣本容量是 .
(2)補(bǔ)全頻數(shù)分布直方圖,并求扇形圖中“15噸~20噸”部分的圓心角的度數(shù).
(3)如果自來(lái)水公司將基本用水量定位每戶25噸,那么該地區(qū)6萬(wàn)用戶中約有多少用戶的用水全部享受基本價(jià)格?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】本學(xué)期我們學(xué)習(xí)了“有理數(shù)乘方”運(yùn)算,知道乘方的結(jié)果叫做“冪”,下面介紹一種有關(guān)“冪”的新運(yùn)算.
定義:am 與 an(a≠0,m、n 都是正整數(shù))叫做同底數(shù)冪,同底數(shù)冪除法記作 am÷an .
運(yùn)算法則如下:am÷an=
根據(jù)“同底數(shù)冪除法”的運(yùn)算法則,回答下列問(wèn)題:
(1)填空: = ,43÷45= .
(2)如果 3x-1÷33x-4=,求出 x 的值.
(3)如果(x﹣1)2x+2÷(x﹣1)x+6=1,請(qǐng)直接寫(xiě)出 x 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一數(shù)值轉(zhuǎn)換器,原理如圖所示,若開(kāi)始輸入x的值是7,可發(fā)現(xiàn)第1次輸出的結(jié)果是12,第2次輸出的結(jié)果是6,依次繼續(xù)下去…,第2017次輸出的結(jié)果是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某船向正東航行,在A處望見(jiàn)燈塔C在東北方向,前進(jìn)到B處望見(jiàn)燈塔C在北偏西30°,又航行了半小時(shí)到D處,望見(jiàn)燈塔C恰在西北方向,若船速為每小時(shí)20海里.求A、D兩點(diǎn)間的距離.(結(jié)果不取近似值)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com