【題目】2013年浙江義烏3分)如圖,拋物線y=ax2+bx+cx軸交于點(diǎn)A10),頂點(diǎn)坐標(biāo)為(1,n),與y軸的交點(diǎn)在(0,2)、(0,3)之間(包含端點(diǎn)),則下列結(jié)論:

當(dāng)x3時(shí),y0;②3a+b0;④3≤n≤4中,

正確的是( )

A. ①② B. ③④ C. ①④ D. ①③

【答案】D

【解析】

①∵拋物線y=ax2+bx+cx軸交于點(diǎn)A-1,0),對(duì)稱軸直線是x=1,

該拋物線與x軸的另一個(gè)交點(diǎn)的坐標(biāo)是(30),

根據(jù)圖示知,當(dāng)x3時(shí),y0。故正確。

根據(jù)圖示知,拋物線開口方向向下,則a0。

對(duì)稱軸,∴b=-2a。

∴3a+b=3a-2a=a0,即3a+b0。故錯(cuò)誤。

③∵拋物線與x軸的兩個(gè)交點(diǎn)坐標(biāo)分別是(-1,0),(3,0),1×3=-3。

,則。

拋物線與y軸的交點(diǎn)在(02)、(0,3)之間(包含端點(diǎn)),∴2≤c≤3。

,即。故正確。

根據(jù)題意知,,

∵2≤c≤3,,即。故錯(cuò)誤。

綜上所述,正確的說(shuō)法有①③。故選D。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校計(jì)劃組織學(xué)生到市影劇院觀看大型感恩歌舞劇,為了解學(xué)生如何去影劇院的問題,學(xué)校隨機(jī)抽取部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果制成了表格、條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(均不完整).

1)此次共調(diào)查了多少位學(xué)生?

2)將表格填充完整;

步行

騎自行車

坐公共汽車

其他

50

3)將條形統(tǒng)計(jì)圖補(bǔ)充完整.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】恩陽(yáng)區(qū)市民廣場(chǎng)有一棵高大的老黃角樹樹.小明為測(cè)量該樹的高度AD,在大樹前的平地上點(diǎn)C處測(cè)得大樹頂端A的仰角∠C31°,然后向前直走22米到達(dá)B處,又測(cè)得大樹頂端A的仰角∠ABD45°,已知C、B、D在同一直線上(如圖所示),求老樹的高度AD.(參考數(shù)據(jù):tan31°≈,sin31°≈

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)ykx+b(k≠0)的圖象與反比例函數(shù)y (n≠0)的圖象交于第二、四象限內(nèi)的AB兩點(diǎn),與x軸交于點(diǎn)C,點(diǎn)B 坐標(biāo)為(m,﹣1),ADx軸,且AD3,tanAOD

(1)求該反比例函數(shù)和一次函數(shù)的解析式;

(2)求△AOB的面積;

(3)點(diǎn)Ex軸上一點(diǎn),且△AOE是等腰三角形,請(qǐng)直接寫出所有符合條件的E點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是O的直徑,AC平分DAB交O于點(diǎn)C,過點(diǎn)C的直線垂直于AD交AB的延長(zhǎng)線于點(diǎn)P,弦CE交AB于點(diǎn)F,連接BE.

(1)求證:PD是O的切線;

(2)若PC=PF,試證明CE平分∠ACB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,CD是⊙O的直徑,ABCD交于點(diǎn)E,點(diǎn)PCD延長(zhǎng)線上的一點(diǎn),AP=AC,且∠B=2P.

(1)求證:PA是⊙O的切線;

(2)PD=,求⊙O的直徑;

(3)在(2)的條件下,若點(diǎn)B等分半圓CD,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線y=ax2+bx+3交x軸于點(diǎn)A(﹣1,0)和點(diǎn)B(3,0).

(1)求該拋物線所對(duì)應(yīng)的函數(shù)解析式;

(2)如圖2,該拋物線與y軸交于點(diǎn)C,頂點(diǎn)為F,點(diǎn)D(2,3)在該拋物線上.

①求四邊形ACFD的面積;

②點(diǎn)P是線段AB上的動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)A、B重合),過點(diǎn)P作PQ⊥x軸交該拋物線于點(diǎn)Q,連接AQ、DQ,當(dāng)△AQD是直角三角形時(shí),求出所有滿足條件的點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了解本校九年級(jí)學(xué)生物理實(shí)驗(yàn)操作技能考查的備考情況,隨機(jī)抽取該年級(jí)部分學(xué)生進(jìn)行了一次測(cè)試,并根據(jù)中考標(biāo)準(zhǔn)按測(cè)試成績(jī)分成A、BC、D四個(gè)等級(jí),繪制出以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息解答下列問題:

(1)本次抽取參加測(cè)試的學(xué)生為_____人,扇形統(tǒng)計(jì)圖中A等級(jí)所對(duì)的圓心角是____度;

(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;

(3)若該校九年級(jí)男生有300人,請(qǐng)估計(jì)該校九年級(jí)學(xué)生物理實(shí)驗(yàn)操作成績(jī)?yōu)?/span>C等級(jí)的有____人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A、B、C,已知A(﹣1,0),C(0,3).

(1)求拋物線的解析式;

(2)如圖1,P為線段BC上一點(diǎn),過點(diǎn)Py軸平行線,交拋物線于點(diǎn)D,當(dāng)△BDC的面積最大時(shí),求點(diǎn)P的坐標(biāo);

(3)如圖2,拋物線頂點(diǎn)為E,EF⊥x軸于F點(diǎn),M(m,0)是x軸上一動(dòng)點(diǎn),N是線段EF上一點(diǎn),若∠MNC=90°,請(qǐng)指出實(shí)數(shù)m的變化范圍,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案