【題目】如圖(1),已知拋物線E:y=ax2+bx+cx軸交于A,B(3,0)兩點(AB的左側),與y軸交于點C(0,3),對稱軸為直線x=1.

(1)填空:a=   ,b=   ,c=   ;

(2)將拋物線E向下平移d個單位長度,使平移后所得拋物線的頂點落在OBC內(包括OBC的邊界),求d的取值范圍;

(3)如圖(2),設點P是拋物線E上任意一點,點H在直線x=﹣3上,PBH能否成為以點P為直角頂點的等腰直角三角形?若能,請求出符合條件的點P的坐標;若不能,請說明理由.

【答案】(1)﹣1,2,3;(2)d的范圍為2d4;(3)P(1,4)或(0,3)或()或(

【解析】

(1)先確定出點A坐標,最后用待定系數(shù)法即可得出結論;

(2)先求出直線BC解析式,再確定出頂點坐標(1,4),最后根據平移即可得出結論;

(3)分兩種情況,利用全等三角形的對應邊相等,建立方程求解即可得出結論.

(1)∵拋物線y=ax2+bx+c的對稱軸為直線x=1,B(3,0),

A(﹣1,0),

∵點A(﹣1,0),B(3,0),C(0,3)在拋物線上,

故答案為:﹣1,2,3;

(2)B(3,0),C(0,3),

∴直線BC的解析式為y=﹣x+3,

a=﹣1,b=2,c=3,

∴拋物線y=﹣x2+2x+3=﹣(x﹣1)2+4,

∴拋物線E的頂點坐標為(1,4),

∵對于直線y=﹣x+3,

x=1時,y=2,

∵拋物線E向下平移d個單位,

∴當d=2時,拋物線的頂點落在BC上,

d=4時,拋物線的頂點落在OB上,

d的范圍為2≤d≤4;

(3)設P(m,﹣m2+2m+3),H(﹣3,n),

①當點Px軸上方時,如圖(2),過點PPE⊥直線x=﹣3E,過點BBFEPEP的延長線于F,

B(3,0),PBH是以點P為直角頂點的等腰直角三角形,

∴∠BPH=90°,BP=PH,

∴∠EPH=FBP,

∴△PHE≌△BPE,

PE=BF,

PE=BF=﹣m2+2m+3,PF=3﹣m,且PE=PF=6,

﹣m2+2m+3+3﹣m=6,

m=1m=0,

P(1,4)或(0,3);

②當點Px軸下方時,如圖(1),

過點PPG⊥直線x=﹣3G,過點BBKGPGP的延長線于K,

易知,PHG≌△BPK,

PG=BK,

PG=6﹣(3﹣m)=m+3,BK=m2﹣2m﹣3,

m+3=m2﹣2m﹣3,

.

即:P(1,4)或(0,3)或

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ADBC,垂足為D,∠B=60°,∠C=45°

1)求∠BAC的度數(shù);

2)若BD=2,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】

如圖,在△ABC中,點ED、F分別在邊ABBC、CA上,且DE∥CA,DF∥BA.下列四個判斷中,不正確的是( )

A.四邊形AEDF是平行四邊形

B.如果∠BAC=90°,那么四邊形AEDF是矩形

C.如果AD平分∠BAC,那么四邊形AEDF是矩形

D.如果AD⊥BCAB=AC,那么四邊形AEDF是菱形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正五邊形的邊長為2,連接對角線AD,BE,CE.線段AD分別與BE,CE相交于點M,N.給出下列結論:①△ABM≌△DCN;DM2=DNAD;MN=3+;④四邊形ANCB為菱形.其中正確的是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,ABAC的垂直平分線分別交BC于點E、F.若△AEF的周長為12cm,則BC的長為____________________cm.若∠EAF=110°,則∠BAC_____________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知y2x+2成正比例,且x=1時,y=8.

解答:⑴求yx之間的函數(shù)關系式;

⑵ 在平面直角坐標系中,① 畫出 ⑴ 中的yx之間的函數(shù)關系式的圖像;

②若將此圖像繞著原點O逆時針轉90°,求出此圖像的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A,P,B,C是半徑為8的⊙O上的四點,且滿足∠BAC=∠APC=60°,

(1)求證:△ABC是等邊三角形;

(2)求圓心O到BC的距離OD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示的折線是某個函數(shù)的圖象,根據圖象解答下列問題.

1)寫出自變量x的取值范圍:__________,函數(shù)值y的取值范圍:__________;

2)求這個分段函數(shù)的表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABC是等腰直角三角形,∠C=90°,點MAC的中點,延長BM至點D,使DM=BM,連接AD

1)如圖①,求證:DAMBCM;

2)已知點NBC的中點,連接AN

①如圖②,求證:BCMACN;

②如圖③,延長NA至點E,使AE=NA,連接DE.求證:BDDE

查看答案和解析>>

同步練習冊答案