【題目】甲船從碼頭出發(fā)順流駛向碼頭,同時乙船從碼頭出發(fā)逆流駛向碼頭,甲,乙兩船到達,兩碼頭后立即返回,乙船返回后行駛20千米與返回的甲船相遇,甲,乙兩船在靜水中的平均速度不變,,兩碼頭間的水流速度為4千米/時,甲船逆流而行的速度與乙船順流而行的速度相等,甲船順流而行速度是乙船逆流而行速度的2倍,則,兩碼頭間的路程為_______千米.

【答案】160

【解析】

由題意先設(shè)乙船逆流而行的速度為m千米/時,并建立方程求出m的值,再設(shè),兩碼頭間的路程為x千米,建立方程求解即可.

解:設(shè)乙船逆流而行的速度為m千米/時,甲船順流而行的速度為2m千米/時,根據(jù)甲船逆流而行的速度與乙船順流而行的速度相等可得:

,解得,

即有乙船逆流而行的速度為16千米/時,乙船順流而行的速度為24千米/時,

甲船逆流而行的速度為24千米/時,甲船順流而行的速度為32千米/時,

又設(shè)兩碼頭間的路程為x千米,根據(jù)題意建立方程:

,解得,

所以,兩碼頭間的路程為160千米.

故答案為:160.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市教育行政部門為了解該市九年級學(xué)生上學(xué)期參加綜合實踐活動的情況,隨機調(diào)查了該市光明中學(xué)九年級學(xué)生上學(xué)期參加綜合實踐活動的時間,并用得到的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息,回答下列問題:

1)試求出該校九年級學(xué)生總數(shù);

2)分別求出活動時間為2天、5天的學(xué)生人數(shù),并補全條形統(tǒng)計圖;

3)如果該市九年級學(xué)生共約50000人,請你估計活動時間不少于4的有多少人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于的不等式組有三個整數(shù)解,且關(guān)于的分式方程有整數(shù)解,則滿足條件的所有整數(shù)的和是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,∠B=60°,對角線AC=BC,點EAB上,將CE繞點C順時針旋轉(zhuǎn)60CF,且點FAD上.

(1)求證:AF=BE;

(2)AE=DF,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知過點B1,0)的直線與直線相交于點P(-1,a).且l1y軸相交于C點,l2x軸相交于A點.

1)求直線的解析式;

2)求四邊形的面積;

3)若點Qx軸上一動點,連接PQ、CQ,當(dāng)QPC周長最小時,求點Q坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在Rt△ABC中,C=90,BC=6,AC=8.動點M從點B開始沿邊BC向點C以每秒1個單位長度的速度運動,動點N從點C開始沿邊CA向點A以每秒2個單位長度的速度運動,點M、N同時出發(fā),且當(dāng)其中一點到達端點時,另一點也隨之停止運動.過點MMDAC,交AB于點D,連接MN.設(shè)運動時間為t秒(t≥0).

(1)當(dāng)t為何值時,四邊形ADMN為平行四邊形?

(2)是否存在t的值,使四邊形ADMN為菱形?若存在,求出t的值;若不存在,說明理由.并探究只改變點N的速度(勻速運動),使四邊形ADMN在某一時刻為菱形,求點N的速度;

(3)如圖2,在整個運動過程中,求出線段MN中點P所經(jīng)過的路徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD,EFABCD分別交于點G,H,∠CHG的平分線HMAB于點M,若∠EGB50°,則∠GMH的度數(shù)為( 。

A. 50°B. 55°C. 60°D. 65°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,A點坐標為(-2,2).

⑴如圖⑴,在△ABO為等腰直角三角形,求B點坐標.

⑵如圖⑴,在⑴的條件下,分別以ABOB為邊作等邊△ABC和等邊△OBD,連結(jié)OC,求∠COB的度數(shù).

⑶如圖⑵,過點AAMy軸于點M,點Ex軸正半軸上一點,KME延長線上一點,以MK為直角邊作等腰直角三角形MKJ,∠MKJ=90°,過點AANx軸交MJ于點N,連結(jié)EN.則①的值不變;②的值不變,其中有且只有一個結(jié)論正確,請判斷出正確的結(jié)論,并加以證明和求出其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】簡單多面體是各個面都是多邊形組成的幾何體,十八世紀瑞士數(shù)學(xué)家歐拉證明了簡單多面體中頂點數(shù)(V)、面數(shù)(F)和棱數(shù)(E)之間存在一個有趣的關(guān)系式,稱為歐拉公式.如表是根據(jù)左邊的多面體模型列出的不完整的表:

多面體

頂點數(shù)

面數(shù)

棱數(shù)

四面體

4

4

6

長方體

8

6

正八面體

8

12

現(xiàn)在有一個多面體,它的每一個面都是三角形,它的面數(shù)(F)和棱數(shù)(E)的和為30,則這個多面體的頂點數(shù)V_____

查看答案和解析>>

同步練習(xí)冊答案