【題目】已知多頂式a3﹣1+3ab2+3d2b,請(qǐng)將該多項(xiàng)式先按a作升冪排列,再按a作降冪排列.
【答案】按a作升冪排列為:﹣1+3d2b+3ab2+a3 ,
按a作降冪排列為:a3+3ab2+3d2b﹣1.
【解析】對(duì)一個(gè)多項(xiàng)式作升冪(或降冪)排列應(yīng)先確定是對(duì)哪個(gè)字母排列,每一種排列只能按這個(gè)字母的指數(shù)大小作為標(biāo)準(zhǔn),如按字母a的降冪排列就是將含a的項(xiàng)按a的指數(shù)由大到小排列.當(dāng)然,重新排列多項(xiàng)式,實(shí)質(zhì)上是根據(jù)加法交換律進(jìn)行的,因此在變更某一項(xiàng)的位置時(shí),一定要帶著這一項(xiàng)的符號(hào)一起移動(dòng).其中,帶有“+”號(hào)的項(xiàng)移到第一項(xiàng)時(shí)“+”號(hào)可以省略;帶有“﹣”號(hào)的項(xiàng)移到第一項(xiàng)時(shí)“﹣”號(hào)不能省略.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù) 的圖象與x軸與交于點(diǎn)A、點(diǎn)B(2,0),與y軸交于點(diǎn)C,∠ACB=90o.
(1)求二次函數(shù)解析式;
(2)直線與軸平行,分別交線段AB、CB于點(diǎn)E、F,且與拋物線交于點(diǎn)P.
①求線段PF取得最大值時(shí),OE的長(zhǎng);
②四邊形ACPB的面積是否存在最大值?如果存在求出此最大值和點(diǎn)P的坐標(biāo);如果不存在,說(shuō)明理由.
(3)不解方程組,直接寫(xiě)出的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一個(gè)兩位數(shù),它的十位數(shù)字和個(gè)位數(shù)字的和為6,則這樣的兩位數(shù)有( 。﹤(gè).
A. 4B. 5C. 6D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是矩形,DG平分∠ADB交AB于點(diǎn)G,GF⊥BD于F.
(1)求證:△ADG≌△FDG;(2)若BG=2AG,BD=2,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,O為直線AB上一點(diǎn),OC平分∠AOE,∠DOE=90°,則以下結(jié)論正確的有____________.(只填序號(hào))
①∠AOD與∠BOE互為余角;
②OD平分∠COA;
③∠BOE=56°40′,則∠COE=61°40′;
④∠BOE=2∠COD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=mx+4的圖象與x軸相交于點(diǎn)A,與反比例函數(shù)y=的圖象相交于點(diǎn)B(1,6).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)設(shè)點(diǎn)P是x軸上一點(diǎn),若S△APB=18,直接寫(xiě)出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一個(gè)三角形的三個(gè)內(nèi)角的度數(shù)之比為1:2:3,那么相對(duì)應(yīng)的三個(gè)外角的度數(shù)之比為( )
A. 3:2:1 B. 1:2:3 C. 3:4:5 D. 5:4:3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把多項(xiàng)式5x2y3﹣2x4y2+7+3x5y按x的降冪排列后,第三項(xiàng)是( 。
A.5x2y3
B.﹣2x4y2
C.7
D.3x5y
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com