【題目】若△ABC~△A′B′C′,面積比為1:4,則△ABC與△A′B′C′的相似比為( )
A.16:1
B.1:16
C.2:1
D.1:2
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】動點(diǎn)A從原點(diǎn)出發(fā)向數(shù)軸負(fù)方向運(yùn)動,同時(shí),動點(diǎn)B也從原點(diǎn)出發(fā)向數(shù)軸正方向運(yùn)動,3秒后,兩點(diǎn)相距15個(gè)單位長度.已知?jiǎng)狱c(diǎn)A、B的速度比是1:4.(速度單位:單位長度/秒)
(1)求出兩個(gè)動點(diǎn)運(yùn)動的速度;
(2)若A、B兩點(diǎn)從(1)中的位置同時(shí)向數(shù)軸負(fù)方向運(yùn)動,幾秒后原點(diǎn)恰好處在兩個(gè)動點(diǎn)正中間;
(3)在(2)中A、B兩點(diǎn)繼續(xù)同時(shí)向數(shù)軸負(fù)方向運(yùn)動時(shí),另一動點(diǎn)C同時(shí)從B點(diǎn)位置出發(fā)向A運(yùn)動,當(dāng)遇到A后,立即返回向B點(diǎn)運(yùn)動,遇到B點(diǎn)后立即返回向A點(diǎn)運(yùn)動,如此往返,直到B追上A時(shí),C立即停止運(yùn)動.若點(diǎn)C一直以20單位長度/秒的速度勻速運(yùn)動,那么點(diǎn)C從開始到停止運(yùn)動,運(yùn)動的路程是多少單位長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,AB=10cm,BC=6cm,若動點(diǎn)P從點(diǎn)C開始,按C→A→B→C
的路徑運(yùn)動,且速度為每秒1cm,設(shè)出發(fā)的時(shí)間為t秒.
(1)出發(fā)2秒后,求△ABP的周長.
(2)當(dāng)t為幾秒時(shí),BP平分∠ABC
(3)問t為何值時(shí),△BCP為等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班數(shù)學(xué)活動小組的同學(xué)用紙板制作長方體包裝盒,其平面展開圖和相關(guān)尺寸如下,其中陰影部分為內(nèi)部粘貼角料(單位:毫米).
(1)此長方體包裝盒的體積為______立方毫米(用含x,y的式子表示).
(2)若內(nèi)部粘貼角料的面積占長方體表面紙板面積的,則當(dāng)x=40,y=70時(shí),制作這樣一個(gè)長方體共需要紙板多少平方毫米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016四川省樂山市第23題)如圖1,四邊形ABCD中,∠B=∠D=90°,AB=3,BC=2,tanA=.
(1)求CD邊的長;
(2)如圖2,將直線CD邊沿箭頭方向平移,交DA于點(diǎn)P,交CB于點(diǎn)Q (點(diǎn)Q運(yùn)動到點(diǎn)B停止),設(shè)DP=x,四邊形PQCD的面積為,求與的函數(shù)關(guān)系式,并求出自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016寧夏第4題)為響應(yīng)“書香校響園”建設(shè)的號召,在全校形成良好的閱讀氛圍,隨機(jī)調(diào)查了部分學(xué)生平均每天閱讀時(shí)間,統(tǒng)計(jì)結(jié)果如圖所示,則本次調(diào)查中閱讀時(shí)間為的眾數(shù)和中位數(shù)分別是( )
A.2和1 B.1.25和1 C.1和1 D.1和1.25
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】⊙O的直徑AB=6,C在AB延長線上,BC=2,若⊙C與⊙O有公共點(diǎn),那么⊙C的半徑r的取值范圍是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016重慶市第16題)點(diǎn)P的坐標(biāo)是(a,b),從-2,-1,0,1,2這五個(gè)數(shù)中任取一個(gè)數(shù)作為a的值,再從余下的四個(gè)數(shù)中任取一個(gè)數(shù)作為b的值,則點(diǎn)P(a,b)在平面直角坐標(biāo)系中第二象限內(nèi)的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列四個(gè)多邊形:①等邊三角形;②正方形;③正五邊形;④正六邊形、其中,既是軸對稱圖形又是中心對稱圖形的是( )
A.①②
B.②③
C.②④
D.①④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com