【題目】如圖,已知在ABCD中,E,F(xiàn)是對角線BD上的兩點,則以下條件不能判斷四邊形AECF為平行四邊形的是(
A.BE=DF
B.AF⊥BD,CE⊥BD
C.∠BAE=∠DCF
D.AF=CE

【答案】D
【解析】解:如圖,連接AC與BD相交于O, 在ABCD中,OA=OC,OB=OD,
要使四邊形AECF為平行四邊形,只需證明得到OE=OF即可;
A、若BE=DF,則OB﹣BE=OD﹣DF,即OE=OF,故本選項錯誤;
B、若AF⊥BD,CE⊥BD,則可以利用“角角邊”證明△ADF和△CBE全等,從而得到DF=BE,然后同A,故本選項錯誤;
C、∠BAE=∠DCF能夠利用“角角邊”證明△ABE和△CDF全等,從而得到DF=BE,然后同A,故本選項錯誤;
D、AF=CE無法證明得到OE=OF,故本選項正確.
故選D.

【考點精析】根據(jù)題目的已知條件,利用平行四邊形的判定與性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段以對角線的交點為中點,并且這兩條直線二等分此平行四邊形的面積.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2bxcxy的值如下表:( )

x

0.10

0.11

0.12

0.13

0.14

y

-5.6

-3.1

-1.5

0.9

1.8

ax2bxc=0的一個根的范圍是( )

A.0.10<x<0.11B.0.11<x<0.12C.0.12<x<0.13D.0.13<x<0.14

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在RtABC中,ACB=90°,點D為斜邊AB的中點,BC=6,CD=5,過點A作AEAD且AE=AD,過點E作EF垂直于AC邊所在的直線,垂足為點F,連接DF,請你畫出圖形,并直接寫出線段DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點.

(1)求證:△ACE≌△BCD;

(2)求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計算正確的是(  )

A.a3a=a3
B.(2a+b)2=4a2+b2
C.a8b÷a2=a4b
D.(﹣3ab32=9a2b6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在鈍角△ABC中,點D是BC的中點,分別以AB和AC為斜邊向△ABC的外側(cè)作等腰直角三角形ABE和等腰直角三角形ACF,M、N分別為AB、AC的中點,連接DM、DN、DE、DF、EM、EF、FN.求證:

(1)△EMD≌△DNF;

(2)△EMD∽△EAF;

(3)DE⊥DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知O為直線AD上一點,射線OC,射線OB,∠AOC與∠AOB互補,OM,ON分別為∠AOC,∠AOB的平分線,若∠MON=40°.

(1)∠COD與∠AOB相等嗎?請說明理由;
(2)試求∠AOC與∠AOB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】要把1張50元的人民幣兌換成面額為5元和10元的人民幣,面值5元x張,面值10元y張,那么x與y間的關(guān)系為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,E為BC的中點,連接AE并延長交DC的延長線于點F,連接BF,AC.求證:∠BAC=∠BFC.

查看答案和解析>>

同步練習(xí)冊答案