【題目】如圖,⊙O的半徑OC=10cm,直線l⊥CO,垂足為H,交⊙O于A,B兩點(diǎn),AB=16cm,直線l平移多少厘米時(shí)能與⊙O相切?
【答案】直線AB向左移4cm,或向右平移16cm時(shí)與圓相切.
【解析】
試題分析:連接OA,延長(zhǎng)CO交⊙O于D,由垂徑定理得OC平分AB.AH=8,由勾股定理可得OH=6,求得CH=4cm,DH=16cm.
解法1:如圖,連接OA,延長(zhǎng)CO交⊙O于D,
∵l⊥OC,
∴OC平分AB,
∴AH=8,
在Rt△AHO中,,
∴CH=4cm,DH=16cm.
答:直線AB向左移4cm,或向右平移16cm時(shí)與圓相切.
解法2:設(shè)直線AB平移xcm時(shí)能與圓相切,(10﹣x)2+82=102
x1=16,x2=4,
∴CH=4cm,DH=16cm.
答:直線AB向左移4cm,或向右平移16cm時(shí)與圓相切.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在下列條件中:①∠A+∠B=∠C;②∠A=∠B=2∠C;③∠A=∠B=α∠C;④∠A﹕∠B﹕∠C=1﹕2﹕3中能確定△ABC為直角三角形的條件有( )
A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ACB與△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,點(diǎn)D為AB邊上的一點(diǎn),
(1)試說(shuō)明:∠EAC=∠B;
(2)若AD=10,BD=24,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P為正方形ABCD的邊BC上一動(dòng)點(diǎn)(P與B、C不重合),連接AP,過點(diǎn)B作BQ⊥AP交CD于點(diǎn)Q,將△BQC沿BQ所在的直線對(duì)折得到△BQC′,延長(zhǎng)QC′交BA的延長(zhǎng)線于點(diǎn)M.
(1)試探究AP與BQ的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)當(dāng)AB=3,BP=2PC,求QM的長(zhǎng);
(3)當(dāng)BP=m,PC=n時(shí),求AM的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過點(diǎn)(﹣1,4),與直線y=﹣x+1相交于A、B兩點(diǎn),其中點(diǎn)A在y軸上,過點(diǎn)B作BC⊥x軸,垂足為點(diǎn)C(﹣3,0).點(diǎn)M是直線AB上方的拋物線上一動(dòng)點(diǎn),過M作MP丄x軸,垂足為點(diǎn)P,交直線AB于點(diǎn)N,設(shè)點(diǎn)M的橫坐標(biāo)為m.
(1)求拋物線的解析式;
(2)當(dāng)m為何值時(shí),線段MN取最大值?并求出這個(gè)最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙、丙、丁四位同學(xué)進(jìn)行一次乒乓球單打比賽,要從中選出兩位同學(xué)打笫一場(chǎng)比賽.
(1)請(qǐng)用樹狀圖法或列表法,求恰好選中甲、乙兩位同學(xué)的概率;
(2)若已確定甲打第一場(chǎng),再?gòu)钠溆嗳煌瑢W(xué)中隨機(jī)選取一位,求恰好選中乙同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)多邊形的內(nèi)角和是外角和的2倍,則這個(gè)多邊形是( )
A. 四邊形 B. 五邊形 C. 六邊形 D. 八邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果三角形的一個(gè)外角小于和它相鄰的內(nèi)角,那么這個(gè)三角形為( ).
A.鈍角三角形 B.銳角三角形 C.直角三角形 D.以上都不對(duì)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com