【題目】某電信公司手機的A類收費標準如下:不管通話時間多長,每部手機每月必須繳月租費12元,另外,通話費按元計;B類收費標準如下:沒有月租費,但通話費按元計按照此類收費標準完成下列各題:
直接寫出每月應繳費用元與通話時長分之間的關系式:
A類:______B類:______
若每月平均通話時長為300分鐘,選擇______類收費方式較少.
求每月通話多長時間時,按兩類收費標準繳費,所繳話費相等.
【答案】(1);(2)選擇A類收費方式(3)每月通話時間240分鐘,按A、B兩類收費標準繳費,所繳話費相等
【解析】
根據題目中收費標準可列出函數關系式;
根據兩種收費方式,計算結果比較得出答案即可;
設每月通話時間x分鐘,按A、B兩類收費標準繳費,所繳話費相等列出方程解答即可.
根據題意得,
A類:,
B類:;
故答案為:;.
類收費:元;
B類收費:元;
,
所以選擇A類收費方式;
設每月通話時間x分鐘,由題意得
,
解得:.
答:每月通話時間240分鐘,按A、B兩類收費標準繳費,所繳話費相等
科目:初中數學 來源: 題型:
【題目】如圖,PA,PB是⊙O的切線,A,B為切點.連接AO并延長交PB的延長線于點C,連接PO交⊙O于點D.
(1)求證:PO平分∠APC;
(2)連接BD,若∠C=30°,求證:DB∥AC.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,A,B,C三點在同一直線上,分別以AB,BC(AB>BC)為邊,在直線AC的同側作等邊ΔABD和等邊ΔBCE,連接AE交BD于點M,連接CD交BE于點N,連接MN. 以下結論:①AE=DC,②MN//AB,③BD⊥AE,④∠DPM=60°,⑤ΔBMN是等邊三角形.其中正確的是__________(把所有正確的序號都填上).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,邊AB、AC的垂直平分線分別交BC于D、E.
(1)若BC=5,求△ADE的周長.
(2)若∠BAD+∠CAE=60°,求∠BAC的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】機械廠加工車間有90名工人,平均每人每天加工大齒輪8個或小齒輪14個,已知1個大齒輪與2個小齒輪配成一套,問需分別安排多少名工人加工大、小齒輪,才能使每天加工的大小齒輪剛好配套?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC中,D是BC邊上的一點,E是AD的中點,過A點作BC的平行線,交CE的延長線于點F,且AF=BD,連接BF.
(1)求證:BD=CD;(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,△ABC中,AB=AC,∠B、∠C的平分線交于O點,過O點作EF∥BC交AB、AC于E、F.試回答:
(1)圖中等腰三角形是 .猜想:EF與BE、CF之間的關系是 .理由:
(2)如圖②,若AB≠AC,圖中等腰三角形是 .在第(1)問中EF與BE、CF間的關系還存在嗎?
(3)如圖③,若△ABC中∠B的平分線BO與三角形外角平分線CO交于O,過O點作OE∥BC交AB于E,交AC于F.這時圖中還有等腰三角形嗎?EF與BE、CF關系又如何?說明你的理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(8分)如圖,在正方形ABCD中,對角線AC、BD相交于O,E、F分別在OD、OC上,且DE=CF,連結DF、AE,AE的延長線交于DF于點M,求證:AM⊥DF.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com