【題目】某校興趣小組在創(chuàng)客嘉年華活動(dòng)中組織了計(jì)算機(jī)編程比賽,八年級(jí)每班派25名學(xué)生參加,成績(jī)分別為、、、四個(gè)等級(jí).其中相應(yīng)等級(jí)的得分依次記為10分、9分、8分、7分.將八年級(jí)的一班和二班的成績(jī)整理并繪制成如下統(tǒng)計(jì)圖表:
班級(jí) | 平均數(shù)(分) | 中位數(shù)(分) | 眾數(shù)(分) | 方差 |
一班 | 8.76 | 9 | 9 | |
二班 | 8.76 | 8 | 10 |
請(qǐng)根據(jù)本學(xué)期所學(xué)過的《數(shù)據(jù)的分析》相關(guān)知識(shí)分析上述數(shù)據(jù),幫助計(jì)算機(jī)編程老師選擇一個(gè)班級(jí)參加校級(jí)比賽,并闡述你選擇的理由.
【答案】答案不唯一.
【解析】
答案不唯一,學(xué)生只要是通過分析表格中所給數(shù)據(jù)而得出的結(jié)論,同時(shí)言之有理即可.
答案不唯一,學(xué)生只要是通過分析表格中所給數(shù)據(jù)而得出的結(jié)論,同時(shí)言之有理即可給分,否則不給分.
如:選擇一班參加校級(jí)比賽.理由:由表格中數(shù)據(jù)可知,兩個(gè)班級(jí)的平均分一樣,而從中位數(shù)、眾數(shù)、方差上看,一班在中位數(shù)和方差上面均優(yōu)于二班,因此可以選擇一班參加校級(jí)比賽.
再如:選擇二班參加校級(jí)比賽.理由:由表格中數(shù)據(jù)可知,兩個(gè)班級(jí)的平均分一樣,二班的眾數(shù)高于一班,因此可以選擇二班參加校級(jí)比賽.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a,b,c是△ABC的三條邊,關(guān)于x的方程x2+x+c-a=0有兩個(gè)相等的實(shí)數(shù)根,方程3cx+2b=2a的根為x=0.
(1)試判斷△ABC的形狀;
(2)若a,b為方程x2+mx-3m=0的兩個(gè)根,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD是△ABC的角平分線,點(diǎn)E,F分別在BC,AB上,且DE∥AB,BE=AF.
(1)求證:四邊形ADEF是平行四邊形;
(2)若∠ABC=60°,BD=6,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,E為CD的中點(diǎn),連接AE、BE,BE⊥AE,延長(zhǎng)AE交BC的延長(zhǎng)線于點(diǎn)F.
求證:(1)FC=AD;(2)AB=BC+AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(﹣3,0),點(diǎn) B是 y軸正半軸上一動(dòng)點(diǎn),點(diǎn)C、D在 x正半軸上.
(1)如圖,若∠BAO=60°,∠BCO=40°,BD、CE 是△ABC的兩條角平分線,且BD、CE交于點(diǎn)F,直接寫出CF的長(zhǎng)_____.
(2)如圖,△ABD是等邊三角形,以線段BC為邊在第一象限內(nèi)作等邊△BCQ,連接 QD并延長(zhǎng),交 y軸于點(diǎn) P,當(dāng)點(diǎn) C運(yùn)動(dòng)到什么位置時(shí),滿足 PD=DC?請(qǐng)求出點(diǎn)C的坐標(biāo);
(3)如圖,以AB為邊在AB的下方作等邊△ABP,點(diǎn)B在 y軸上運(yùn)動(dòng)時(shí),求OP的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,平面內(nèi)互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,如果兩條數(shù)軸不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么這兩條數(shù)軸構(gòu)成的是平面斜坐標(biāo)系,兩條數(shù)軸稱為斜坐標(biāo)系的坐標(biāo)軸,公共原點(diǎn)稱為斜坐標(biāo)系的原點(diǎn),如圖1,經(jīng)過平面內(nèi)一點(diǎn)P作坐標(biāo)軸的平行線PM和PN,分別交x軸和y軸于點(diǎn)M,N.點(diǎn)M、N在x軸和y軸上所對(duì)應(yīng)的數(shù)分別叫做P點(diǎn)的x坐標(biāo)和y坐標(biāo),有序?qū)崝?shù)對(duì)(x,y)稱為點(diǎn)P的斜坐標(biāo),記為P(x,y).
(1)如圖2,ω=45°,矩形OABC中的一邊OA在x軸上,BC與y軸交于點(diǎn)D,OA=2,OC=l.
①點(diǎn)A、B、C在此斜坐標(biāo)系內(nèi)的坐標(biāo)分別為A ,B ,C .
②設(shè)點(diǎn)P(x,y)在經(jīng)過O、B兩點(diǎn)的直線上,則y與x之間滿足的關(guān)系為 .
③設(shè)點(diǎn)Q(x,y)在經(jīng)過A、D兩點(diǎn)的直線上,則y與x之間滿足的關(guān)系為 .
(2)若ω=120°,O為坐標(biāo)原點(diǎn).
①如圖3,圓M與y軸相切原點(diǎn)O,被x軸截得的弦長(zhǎng)OA=4 ,求圓M的半徑及圓心M的斜坐標(biāo).
②如圖4,圓M的圓心斜坐標(biāo)為M(2,2),若圓上恰有兩個(gè)點(diǎn)到y軸的距離為1,則圓M的半徑r的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(-3,3),B(-4,-2),C(-1,-1).
(1)在圖中作出△ABC關(guān)于y軸對(duì)稱的△A'B'C',并寫出點(diǎn)C'的坐標(biāo)________;
(2)在y軸上畫出點(diǎn)P,使PA+PC最小,并直接寫出P點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,,,且, 滿足,直線經(jīng)過點(diǎn)和.
(1) 點(diǎn)的坐標(biāo)為( , ), 點(diǎn)的坐標(biāo)為( , );
(2)如圖1,已知直線經(jīng)過點(diǎn) 和軸上一點(diǎn), ,點(diǎn)在直線AB上且位于軸右側(cè)圖象上一點(diǎn),連接,且.
①求點(diǎn)坐標(biāo);
②將沿直線AM 平移得到,平移后的點(diǎn)與點(diǎn)重合,為 上的一動(dòng)點(diǎn),當(dāng)的值最小時(shí),請(qǐng)求出最小值及此時(shí) N 點(diǎn)的坐標(biāo);
(3)如圖 2,將點(diǎn)向左平移 2 個(gè)單位到點(diǎn),直線經(jīng)過點(diǎn)和,點(diǎn)是點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),直線經(jīng)過點(diǎn)和點(diǎn),動(dòng)點(diǎn)從原點(diǎn)出發(fā)沿著軸正方向運(yùn)動(dòng),連接,過點(diǎn)作直線的垂線交軸于點(diǎn),在直線上是否存在點(diǎn),使得是等腰直角三角形?若存在,求出點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,、,且、滿足
(1)求、兩點(diǎn)的坐標(biāo);
(2)過點(diǎn)的直線上有一點(diǎn),連接、, ,如圖2,當(dāng)點(diǎn)在第二象限時(shí),交軸于點(diǎn),延長(zhǎng)交軸于點(diǎn),設(shè)的長(zhǎng)為,的長(zhǎng)為,用含的式子表示;
(3)在(2)的條件下,如圖3,當(dāng)點(diǎn)在第一象限時(shí),過點(diǎn)作交于點(diǎn),連接,若,,求的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com