【題目】如圖,銳角三角形 ABC 和銳角三角形 A'B'C'中,AD、A'D'分別是邊 BCB'C'上的高,且ABA'B',ADA'D'.要使△ABC≌△A'B'C',則應補充條件:________(填寫一個即可)

【答案】CD=C'D'(AC=A'C,或∠C=C'或∠CAD=C'A'D')答案不唯一

【解析】

根據(jù)判定方法,結合圖形和已知條件,尋找添加條件

:我們可以先利用HL判定ΔABD≌ΔA'B'D'得出對應邊相等,對應角相等.

此時若添加CD=C'D',可以利用SAS來判定其全等;

添加∠C=C',可以利用AAS判定其全等;還可添加AC=A'C',CAD=C'A'D'.故答案為CD=C'D'(AC=A'C,或∠C=C'或∠CAD=C'A'D')答案不唯一.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】探究題
(1)問題發(fā)現(xiàn)
如圖1,△ABC和△BDE均為等邊三角形,點A,D,E在同一直線上,連接CD.填空;

①CDB的度數(shù)為
②線段AE,CD之間的數(shù)量關系為
(2)拓展探究
如圖2,△ABC和△DBE均為等腰直角三角形,∠ABC=∠DBE=90°,點A,D,E在同一直線上,BF為△DBE中DE邊上的高,連接CD.
①求∠CDB的大;
②請判斷線段BF,AD,CD之間的數(shù)量關系,并說明理由.
(3)解決問題
如圖3,在正方形ABCD中,AC=2 ,AE=1,CE⊥AE于E,請補全圖形,求點B到CE的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在ABCD中,點B關于AD的對稱點為B′,連接AB′,CB′,CB′交AD于F點.
(1)如圖1,∠ABC=90°,求證:F為CB′的中點;

(2)小宇通過觀察、實驗、提出猜想:如圖2,在點B繞點A旋轉(zhuǎn)的過程中,點F始終為CB′的中點.小宇把這個猜想與同學們進行交流,通過討論,形成了證明該猜想的幾種想法:

想法1:過點B′作B′G∥CD交AD于G點,只需證三角形全等;
想法2:連接BB′交AD于H點,只需證H為BB′的中點;
想法3:連接BB′,BF,只需證∠B′BC=90°.

請你參考上面的想法,證明F為CB′的中點.(一種方法即可)
(3)如圖3,當∠ABC=135°時,AB′,CD的延長線相交于點E,求 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】課題學習:設計概率模擬實驗. 在學習概率時,老師說:“擲一枚質(zhì)地均勻的硬幣,大量重復實驗后,正面朝上的概率約是 .”小海、小東、小英分別設計了下列三個模擬實驗:
小海找來一個啤酒瓶蓋(如圖1)進行大量重復拋擲,然后計算瓶蓋口朝上的次數(shù)與總次數(shù)的比值;
小東用硬紙片做了一個圓形轉(zhuǎn)盤,轉(zhuǎn)盤上分成8個大小一樣的扇形區(qū)域,并依次標上1至8個數(shù)字(如圖2),轉(zhuǎn)動轉(zhuǎn)盤10次,然后計算指針落在奇數(shù)區(qū)域的次數(shù)與總次數(shù)的比值;
小英在一個不透明的盒子里放了四枚除顏色外都相同的圍棋子(如圖3),其中有三枚是白子,一枚是黑子,從中隨機同時摸出兩枚棋子,并大量重復上述實驗,然后計算摸出的兩枚棋子顏色不同的次數(shù)與總次數(shù)的比值.

根據(jù)以上材料回答問題:
小海、小東、小英三人中,哪一位同學的實驗設計比較合理,并簡要說出其他兩位同學實驗的不足之處.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩名射手在相同條件下打靶,射中的環(huán)數(shù)如圖所示,利用圖中提供的信息,解答下列問題:

(1)分別求甲、乙兩名射手中環(huán)數(shù)的眾數(shù)和平均數(shù);

(2)如果從甲、乙兩名射手中選一名去參加射擊比賽,你選誰去?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】【問題情境】
已知矩形的面積為a(a為常數(shù),a>0),當該矩形的長為多少時,它的周長
最。孔钚≈凳嵌嗌?
【數(shù)學模型】
設該矩形的長為x,周長為y,則y與x的函數(shù)表達式為y=2(x+ )(x>0).
【探索研究】
小彬借鑒以前研究函數(shù)的經(jīng)驗,先探索函數(shù)y=x+ 的圖象性質(zhì).
(1)結合問題情境,函數(shù)y=x+ 的自變量x的取值范圍是x>0,如表是y與x的幾組對應值.

x

1

2

3

m

y

4

3

2

2

2

3

4

①寫出m的值;
②畫出該函數(shù)圖象,結合圖象,得出當x=時,y有最小值,y最小=;
(2)【解決問題】
直接寫出“問題情境”中問題的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列等式:

……

(1)請寫出第4個等式:________________;

(2)觀察上述等式的規(guī)律,猜想第n個等式(用含n的式子表示),并驗證其正確性.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長方形中,=4cm,=3cm,的中點.動點點出發(fā),以每秒1cm的速度沿運動,最終到達點.若點運動的時間為秒,則當=________ 時,的面積等于4.5.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,一次函數(shù)的圖象與軸交于點.

(1)若點關于軸的對稱點在一次函數(shù)的圖象上,求的值;

(2)求由直線,(1)中的直線以及軸圍成的三角形的面積.

查看答案和解析>>

同步練習冊答案