【題目】已知二次函數(shù)y=x2+bx+c的圖象經(jīng)過(0,3),(4,3).
(1)求b、c的值.
(2)開口方向 ,對稱軸為 ,頂點(diǎn)坐標(biāo)為 .
(3)該函數(shù)的圖象怎樣由y=x2的圖象平移得到.
【答案】(1)b=-4,c=3;(2)向上,直線x=2,(2,﹣1);(3)y=(x﹣2)2﹣1是由y=x2向右平移2個(gè)單位,向下平移1個(gè)單位得到的.
【解析】
(1)將(0,3)(4,3)兩點(diǎn)坐標(biāo)代入y=x2+bx+c,解方程即可求得b、c的值;
(2)根據(jù)二次函數(shù)的性質(zhì),利用配方法求出求出函數(shù)的最值與對稱軸即可;
(3)根據(jù)平移規(guī)律直接回答即可.
解:(1)由于二次函數(shù)y=x2+bx+c的圖象經(jīng)過點(diǎn)(0,3)、(4,3),
則,解得:;
(2)由二次函數(shù)y=x2﹣4x+3可知:a=1,開口方向向下;
原二次函數(shù)經(jīng)變形得:y=(x﹣2)2﹣1,
故頂點(diǎn)為(2,﹣1),對稱軸是直線x=2
故答案為向上,直線x=2,(2,﹣1);
(3)y=(x﹣2)2﹣1是由y=x2向右平移2個(gè)單位,向下平移1個(gè)單位得到的.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在寬20米,長32米的矩形耕地上,修筑同樣寬的三條路(兩條縱向,一條橫向,并且橫向與縱向互相垂直),把這塊耕地分成大小相等的六塊試驗(yàn)田,要使試驗(yàn)田的面積是570平方米,問道路應(yīng)該多寬?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的位置如圖所示
(1)請畫出△ABC關(guān)于y軸對稱的△A′B′C′;(其中A′、B′、C′分別是A、B、C的對應(yīng)點(diǎn),不寫畫法)
(2)直接寫出A′B′C′三點(diǎn)的坐標(biāo);
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+2x+m﹣2=0有兩個(gè)實(shí)數(shù)根,m為正整數(shù),且該方程的根都是整數(shù),則符合條件的所有正整數(shù)m的和為( 。
A. 6 B. 5 C. 4 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣(x﹣h)2(h為常數(shù)),當(dāng)自變量x的值滿足2≤x≤5時(shí),與其對應(yīng)的函數(shù)值y的最大值為﹣1,則h的值為( )
A. 3或6 B. 1或6 C. 1或3 D. 4或6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:y=kx+1與拋物線y=x2-4x
(1)求證:直線l與該拋物線總有兩個(gè)交點(diǎn);
(2)設(shè)直線l與該拋物線兩交點(diǎn)為A,B,O為原點(diǎn),當(dāng)k=-2時(shí),求△OAB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一種斜挎包,其挎帶由雙層部分、單層部分和調(diào)節(jié)扣構(gòu)成.小垣用后發(fā)現(xiàn),通過調(diào)節(jié)扣加長或縮短單層部分的長度,可以使挎帶的長度(單層部分與雙層部分長度的和,其中調(diào)節(jié)扣所占的長度忽略不計(jì))加長或縮短.設(shè)單層部分的長度為xcm,雙層部分的長度為ycm,經(jīng)測量,得到如下數(shù)據(jù):
(1)根據(jù)表中數(shù)據(jù)的規(guī)律,補(bǔ)全以下表格,并求出y關(guān)于x的函數(shù)表達(dá)式;
單層部分的長度x(cm) | … | 4 | 6 | 8 | 10 | … | 150 |
雙層部分的長度y(cm) | … | 73 | 72 | 71 | ______ | … | ______ |
(2)根據(jù)小垣的身高和習(xí)慣,挎帶的長度為120cm時(shí),背起來正合適,請求出此時(shí)單層部分的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的部分圖象如圖所示,其中圖象與軸交于點(diǎn),與軸交于點(diǎn),且經(jīng)過點(diǎn).
求此二次函數(shù)的解析式;
將此二次函數(shù)的解析式寫成的形式,并直接寫出頂點(diǎn)坐標(biāo)以及它與軸的另一個(gè)交點(diǎn)的坐標(biāo).
利用以上信息解答下列問題:若關(guān)于的一元二次方程(為實(shí)數(shù))在的范圍內(nèi)有解,則的取值范圍是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果任意選擇一對有序整數(shù)(m,n),其中|m|≤1,|n|≤3,每一對這樣的有序整數(shù)被選擇的可能性是相等的,那么關(guān)于x的方程x2+nx+m=0有兩個(gè)相等實(shí)數(shù)根的概率是______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com