【題目】如圖,已知AB為⊙O的直徑,BD和CD為⊙O的切線(xiàn),切點(diǎn)分別為B和C.

(1)求證:AC∥OD;

(2)當(dāng)BC=BD,且BD=6cm時(shí),求圖中陰影部分的面積(結(jié)果不取近似值).

【答案】(1)見(jiàn)解析;(2)( 4π﹣3)cm2

【解析】分析:(1)連接OC,證明∠OCD=90°.根據(jù)切線(xiàn)定理得DC=DB,OBBD,OCCD,證得OCD≌△OBD,再結(jié)合AB為直徑,ACBC,可得∠ACO=COM,從而得證
(2)陰影面積=S扇形OBC-SOBC.根據(jù)切線(xiàn)長(zhǎng)定理知△BCD為等邊三角形,可求∠BOC的度數(shù),運(yùn)用相關(guān)公式計(jì)算.

詳解:

(1)證明:連接OC.

BDCD為⊙O的切線(xiàn),

DC=DB,OBBD,OCCD,

OB=OC,

∴△OCD≌△OBD,

∴∠COM=BOM,從而易得BCOD,

AB為直徑,

ACBC,

∴∠ACO+OCM=COM+OCM=90°,

∴∠ACO=COM,

ACOD.

(2)DB,DC為切線(xiàn),B,C為切點(diǎn),

DB=DC.

又∵DB=BC=6,∴△BCD為等邊三角形.

∴∠BOC=360°﹣90°﹣90°﹣60°=120°,

OBM=90°﹣60°=30°,BM=3.

OM=,OB=2

S陰影部分=S扇形OBC﹣SOBC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P的角平分線(xiàn)OC上一點(diǎn),PNOB于點(diǎn)N,點(diǎn)M是線(xiàn)段ON上一點(diǎn),已知OM=3,ON=4,點(diǎn)DOA上一點(diǎn),若滿(mǎn)足PD=PM,OD的長(zhǎng)度為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC 中,∠C=90°,A=34°,D,E 分別為 AB,AC 上一點(diǎn),將△BCD,ADE 沿 CD,DE 翻折,點(diǎn) A,B 恰好重合于點(diǎn) P 則∠ACP=_______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線(xiàn)經(jīng)過(guò)點(diǎn)A,0),B0),且與y軸相交于點(diǎn)C

1求這條拋物線(xiàn)的表達(dá)式;

2)求∠ACB的度數(shù);

3設(shè)點(diǎn)D是所求拋物線(xiàn)第一象限上一點(diǎn),且在對(duì)稱(chēng)軸的右側(cè),點(diǎn)E在線(xiàn)段AC上,且DEAC,當(dāng)DCEAOC相似時(shí),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:在△ABC中,∠ACB=90°,AC=BC,過(guò)點(diǎn)C在△ABC外作直線(xiàn)MNAMMNM,BNMNN
1)求證:MN=AM+BN
2)若過(guò)點(diǎn)C在△ABC內(nèi)作直線(xiàn)MNAMMNM,BNMNN,則AM、BNMN之間有什么關(guān)系?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在RtABC中,∠A=90°,AB=AC,點(diǎn)D,E分別在邊AB,AC上,AD=AE,連接DC,點(diǎn)M,PN分別為DE,DC,BC的中點(diǎn).

(1)觀(guān)察猜想

1中,線(xiàn)段PMPN的數(shù)量關(guān)系是 ,位置關(guān)系是 ;

(2)探究證明

ADE繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷PMN的形狀,并說(shuō)明理由;

(3)拓展延伸

ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請(qǐng)直接寫(xiě)出PMN面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AD=10,AB=8,點(diǎn)E為邊DC上一動(dòng)點(diǎn),連接AE,把ADE沿AE折疊,使點(diǎn)D落在點(diǎn)D′處,當(dāng)DD′C是直角三角形時(shí),DE的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn)P的坐標(biāo)為(2a+6,a-3

1)當(dāng)點(diǎn)P的縱坐標(biāo)為-4,求a的值;

2)若點(diǎn)Py軸上,求點(diǎn)P的坐標(biāo);

3)若點(diǎn)P在第四象限,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)按要求完成下面三道小題(本題作圖不要求尺規(guī)作圖).

1)如圖1,AB=AC.這兩條線(xiàn)段一定關(guān)于∠BAC______所在直線(xiàn)對(duì)稱(chēng),請(qǐng)畫(huà)出該直線(xiàn).

2)如圖2,已知線(xiàn)段AB和點(diǎn)C.求作線(xiàn)段CD,使它與AB成軸對(duì)稱(chēng),且AC是對(duì)稱(chēng)點(diǎn),對(duì)稱(chēng)軸是線(xiàn)段AC______.

3)如圖3,任意位置(不成軸對(duì)稱(chēng))的兩條線(xiàn)段AB,CD,AB=CD.你能從(1),(2)問(wèn)中獲得的啟示,對(duì)其中一條線(xiàn)段作兩次軸對(duì)稱(chēng)使它們重合嗎?如果能,請(qǐng)畫(huà)出圖形并簡(jiǎn)要描述操作步驟;如果不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案