【題目】下列運(yùn)算中,能用平方差公式計(jì)算的是(

A. (﹣a+b)(abB. ab)(﹣b+a

C. 3ab)(3b+aD. b+2a)(2ab

【答案】D

【解析】

根據(jù)平方差公式(a+b)(a-b=a2-b2判斷即可.

A、(-a+b)(a-b=-a-b)(a-b),不符合平方差公式的結(jié)構(gòu)特點(diǎn),故本選項(xiàng)錯(cuò)誤;

B、(a-b)(-b-a=a-b)(a-b),不符合平方差公式的結(jié)構(gòu)特點(diǎn),故本選項(xiàng)錯(cuò)誤;

C、(3a-b)(3b+a),不符合平方差公式的結(jié)構(gòu)特點(diǎn),故本選項(xiàng)錯(cuò)誤;

D、(b+2a)(2a-b),符合平方差公式的結(jié)構(gòu)特點(diǎn),故本選項(xiàng)正確;

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,假命題是(

A.一組對(duì)邊相等,另一組對(duì)邊平行的四邊形是平行四邊形 B.三個(gè)角是直角的四邊形是矩形

C.四邊相等的四邊形是菱形D.有一個(gè)角是直角的菱形是正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為判斷命題“有三條邊相等且一組對(duì)角相等的四邊形是菱形”的真假,數(shù)學(xué)課上,老師給出菱形ABCD如圖1,并作出了一個(gè)四邊形ABC′D.具體作圖過程如下:
如圖2,在菱形ABCD中,
①連接BD,以點(diǎn)B為圓心,以BD的長(zhǎng)為半徑作圓弧,交CD于點(diǎn)P;
②分別以B、D為圓心,以BC、PC的長(zhǎng)為半徑作圓弧,兩弧交于點(diǎn)C′.
③連接BC′、DC′,得四邊形ABC′D.

依據(jù)上述作圖過程,解決以下問題:
(1)求證:∠A=∠C′;AD=BC′.
(2)根據(jù)作圖過程和(1)中的結(jié)論,說明命題“有三條邊相等且有一組對(duì)頂角相等的四邊形是菱形”是命題.(填寫“真”或“假”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知點(diǎn)A(0,9),B(24,9),C(22+3 ,0),半圓P的直徑MN=6 ,且P,A重合時(shí),點(diǎn)M,N在AB上,過點(diǎn)C的直線l與x軸的夾角α為60°.現(xiàn)點(diǎn)P從A出發(fā)以每秒1個(gè)單位長(zhǎng)度的速度向B運(yùn)動(dòng),與此同時(shí),半圓P以每秒15°的速度繞點(diǎn)P順時(shí)針旋轉(zhuǎn),直線l以每秒1個(gè)單位長(zhǎng)度的速度沿x軸負(fù)方向運(yùn)動(dòng)(與x軸的交點(diǎn)為Q).當(dāng)P、B重合時(shí),半圓P與直線l停止運(yùn)動(dòng).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.

【發(fā)現(xiàn)】
(1)點(diǎn)N距x軸的最近距離為 , 此時(shí),PA的長(zhǎng)為
(2)t=9時(shí),MN所在直線是否經(jīng)過原點(diǎn)?請(qǐng)說明理由.
(3)如圖3,當(dāng)點(diǎn)P在直線l時(shí),求直線l分半圓P所成兩部分的面積比.

(4)【拓展】如圖4,當(dāng)半圓P在直線左側(cè),且與直線l相切時(shí),求點(diǎn)P的坐標(biāo).

(5)【探究】求出直線l與半圓P有公共點(diǎn)的時(shí)間有多長(zhǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(
A.“買一張電影票,座位號(hào)為偶數(shù)”是必然事件
B.若甲、乙兩組數(shù)據(jù)的方差分別為s =0.3、s =0.1,則甲組數(shù)據(jù)比乙組數(shù)據(jù)穩(wěn)定
C.一組數(shù)據(jù)2,4,5,5,3,6的眾數(shù)是5
D.若某抽獎(jiǎng)活動(dòng)的中獎(jiǎng)率為 ,則參加6次抽獎(jiǎng)一定有1次能中獎(jiǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:AB//CD,求證:B+D+BED=360°(至少用三種方法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題:如圖(1),點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BE、EF、FD之間的數(shù)量關(guān)系.

【發(fā)現(xiàn)證明】小聰把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,從而發(fā)現(xiàn)EF=BE+FD,請(qǐng)你利用圖(1)證明上述結(jié)論.

【類比引申】如圖(2),四邊形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,點(diǎn)E、F分別在邊BC、CD上,則當(dāng)∠EAF與∠BAD滿足 關(guān)系時(shí),仍有EF=BE+FD.

【探究應(yīng)用】如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分別有景點(diǎn)E、F,且AE⊥AD,DF=40(﹣1)米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長(zhǎng)(結(jié)果取整數(shù),參考數(shù)據(jù): =1.41, =1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A1 (1,1),A2 (2,4),A3 (3,9),A4 (4,16),…,用你發(fā)現(xiàn)的規(guī)律確定點(diǎn)A10的坐標(biāo)是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,將半徑為2的圓形紙片沿圓的兩條互相垂直的直徑AC,BD兩次折疊后,得到如圖2所示的扇形OAB,然后再沿OB的中垂線EF將扇形OAB剪成左右兩部分,則∠OEF=°;右邊部分經(jīng)過兩次展開并壓平后所得的圖形的周長(zhǎng)為

查看答案和解析>>

同步練習(xí)冊(cè)答案