【題目】如圖,正方形ABCD,點(diǎn)E,F(xiàn)分別在AD,CD上,BG⊥EF,點(diǎn)G為垂足,AB=5a,AE=a,CF=2a,則BG長是( )

A. a B. a C. a D. a

【答案】B

【解析】

如圖,連接BE、BF.根據(jù)正方形的性質(zhì)求得DE=4a,DF=3a再由勾股定理求得EF=5a,利用S△BEF=EFBG=S正方形ABCD-S△ABE-S△BCF-S△DEF,即可求得BG的長.

如圖,連接BE、BF.

∵四邊形ABCD是正方形,

∴AB=BC=CD=AD=5a,

∵AE=a,AF=2a,

∴DE=4a,DF=3a,

∴根據(jù)勾股定理求得EF=5a,

∵S△BEF=EFBG=S正方形ABCD-S△ABE-S△BCF-S△DEF

5aBG=25a2-5aa-5a2a-3a4a,

∴BG=.

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:平面直角坐標(biāo)系中,點(diǎn)A(a,b)的坐標(biāo)滿足|a﹣b|+b2﹣8b+16=0.

(1)如圖1,求證:OA是第一象限的角平分線;

(2)如圖2,過A作OA的垂線,交x軸正半軸于點(diǎn)B,點(diǎn)M、N分別從O、A兩點(diǎn)同時(shí)出發(fā),在線段OA上以相同的速度相向運(yùn)動(dòng)(不包括點(diǎn)O和點(diǎn)A),過A作AE⊥BM交x軸于點(diǎn)E,連BM、NE,猜想∠ONE與∠NEA之間有何確定的數(shù)量關(guān)系,并證明你的猜想;

(3)如圖3,F(xiàn)是y軸正半軸上一個(gè)動(dòng)點(diǎn),連接FA,過點(diǎn)A作AE⊥AF交x軸正半軸于點(diǎn)E,連接EF,過點(diǎn)F點(diǎn)作∠OFE的角平分線交OA于點(diǎn)H,過點(diǎn)H作HK⊥x軸于點(diǎn)K,求2HK+EF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著智能手機(jī)的普及,微信搶紅包已成為春節(jié)期間人們最喜歡的活動(dòng)之一,某校七年級(jí)(1)班班長對(duì)全班50名學(xué)生在春節(jié)期間所搶的紅包金額進(jìn)行統(tǒng)計(jì),并繪制成了統(tǒng)計(jì)圖.請(qǐng)根據(jù)以上信息回答:

1)該班同學(xué)所搶紅包金額的眾數(shù)是______

中位數(shù)是______;

2)該班同學(xué)所搶紅包的平均金額是多少元?

3)若該校共有18個(gè)班級(jí),平均每班50人,請(qǐng)你估計(jì)該校學(xué)生春節(jié)期間所搶的紅包總金額為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ADABCBC邊上的高,AE平分∠BAC,若∠B42°,∠C70°,求∠AEC和∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與軸交于點(diǎn),與軸交于點(diǎn)則此拋物線對(duì)此函數(shù)的表達(dá)式為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,DBC邊上的中點(diǎn),∠BDE=∠CDF,請(qǐng)你添加一個(gè)條件,使DE=DF成立.

(1)你添加的條件是

(2)(1)的條件下,不再添加輔助線和字母,證明DE=DF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一個(gè)分式的分子或分母可以因式分解,且這個(gè)分式不可約分,那么我們稱這個(gè)分式為“和諧分式”

(1)下列分式中, 是和諧分式(填序號(hào)即可)

(2)為正整數(shù),且為和諧分式,請(qǐng)寫出所有的值

(3)在化簡時(shí),

小強(qiáng)進(jìn)行了如下三步變形:

原式=

請(qǐng)你接著小強(qiáng)的方法完成化簡.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了貫徹落實(shí)市委政府提出的精準(zhǔn)扶貧精神,某校特制定了一系列幫扶A、B兩貧困村的計(jì)劃,現(xiàn)決定從某地運(yùn)送152箱魚苗到A、B兩村養(yǎng)殖,若用大小貨車共15輛,則恰好能一次性運(yùn)完這批魚苗,已知這兩種大小貨車的載貨能力分別為12/輛和8/輛,其運(yùn)往A、B兩村的運(yùn)費(fèi)如表:

車型

目的地

A村(元/輛)

B村(元/輛)

大貨車

800

900

小貨車

400

600

(1)求這15輛車中大小貨車各多少輛?

(2)現(xiàn)安排其中10輛貨車前往A村,其余貨車前往B村,設(shè)前往A村的大貨車為x輛,前往A、B兩村總費(fèi)用為y元,試求出yx的函數(shù)解析式.

(3)在(2)的條件下,若運(yùn)往A村的魚苗不少于100箱,請(qǐng)你寫出使總費(fèi)用最少的貨車調(diào)配方案,并求出最少費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,它與x軸的兩個(gè)交點(diǎn)分別為(-1,0),(3,0).對(duì)于下列命題:①b-2a=0;abc<0;4a-2b+c<0.其中正確的有( 。

A. 3個(gè) B. 2個(gè) C. 1個(gè) D. 0個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案