【題目】(1)觀察下列各式:
……試用你發(fā)現(xiàn)的規(guī)律填空: , 。
(2)請你用含有一個字母的等式將上面各式呈現(xiàn)的規(guī)律表示出來,并用所學數(shù)學知識說明你所寫式子的正確性。
【答案】(1)192172=4×18,482462=4×47;(2)(n+2)2n2=4(n+1).
【解析】
(1)根據(jù)由6242=4×5,5界于4和6之間的正整數(shù),,7界于6和8之間的正整數(shù),11292=4×10,10界于11和9之間的正整數(shù),可得出192172=4×18,482462=4×47;
(2)由(1)推出該規(guī)律為:(n+2)2n2=4(n+1).
(1)根據(jù)由6242=4×5,5界于4和6之間的正整數(shù),,7界于6和8之間的正整數(shù),11292=4×10,10界于11和9之間的正整數(shù)
∴可得出192172=4×18,482462=4×47;
(2)由(1)推出該規(guī)律為:(n+2)2n2=4(n+1).
故答案為:(1)192172=4×18,482462=4×47;(2)(n+2)2n2=4(n+1).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,已知AB=4,BC=3,矩形在直線上繞其右下角的頂點B向右旋轉(zhuǎn)90°至圖①位置,再繞右下角的頂點繼續(xù)向右旋轉(zhuǎn)90°至圖②位置,...,以此類推,這樣連續(xù)旋轉(zhuǎn)2018次后,頂點A在整個旋轉(zhuǎn)過程中所經(jīng)過的路程之和是____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們熟知的七巧板,是由宋代黃伯思設計的“燕幾圖”(“燕幾”就是“宴幾”,也就是宴請賓客的案幾)演變而來.到了明代,嚴澄將“燕幾圖”里的方形案幾改為三角形,發(fā)明了“蝶翅幾”.而到了清代初期,在“燕幾圖”和“蝶翅幾”的基礎上,兼有三角形、正方形和平行四邊形,能拼出更加生動、多樣圖案的七巧板就問世了(如圖1網(wǎng)格中所示)
(1)若正方形網(wǎng)格的邊長為1,則圖1中七巧板的七塊拼板的總面積為_____________
(2)使用圖1中的七巧板可以拼出一個輪廓如圖2所示的長方形,請在圖2中畫出拼圖方法(要求:畫出各塊拼板的輪廓)
(3)隨著七巧板的發(fā)展,出現(xiàn)了一些形式不同的七巧板,如圖3所示的是另一種七巧板.利用圖3中的七巧板可以拼出一個輪廓如圖4所示的圖形;大正方形的中間去掉一個小正方形,請在圖4中畫出拼圖的方法(要求:畫出各塊拼板的輪廓)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知ΔABC內(nèi)接于⊙O,AB為⊙O的直徑,BD⊥AB,交AC的延長線于點D.
(1)若E是BD的中點,連結CE,試判斷CE與⊙O的位置關系.
(2)若AC=3CD,求∠A的大。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,O是直線AB上一點,OD是∠AOC的平分線,∠COD與∠COE互余
求證:∠AOE與∠COE互補.
請將下面的證明過程補充完整:
證明:∵O是直線AB上一點
∴∠AOB=180°
∵∠COD與∠COE互余
∴∠COD+∠COE=90°
∴∠AOD+∠BOE=_________°
∵OD是∠AOC的平分線
∴∠AOD=∠________(理由:_______________)
∴∠BOE=∠COE(理由:________________)
∵∠AOE+∠BOE=180°
∴∠AOE+∠COE=180°
∴∠AOE與∠COE互補
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】直線y=x+b與雙曲線y=交于點A(﹣1,﹣5).并分別與x軸、y軸交于點C、B.
(1)直接寫出b= ,m= ;
(2)根據(jù)圖象直接寫出不等式x+b<的解集為 ;
(3)若點D在x軸的正半軸上,是否存在以點D、C、B構成的三角形與△OAB相似?若存在,請求出D的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,正方形ABCD的頂點D在y軸上,A(﹣3,0),B(1,b),則正方形ABCD的面積為( 。
A.34B.25C.20D.16
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】南沙群島是我國固有領土,現(xiàn)在我南海漁民要在南沙某海島附近進行捕魚作業(yè),當漁船航行至B處時,測得該島位于正北方向海里的C處,為了防止某國還巡警干擾,就請求我A處的魚監(jiān)船前往C處護航,已知C位于A處的北偏東45°方向上,A位于B的北偏西30°的方向上,求A、C之間的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在中,對角線交于點,將過點的直線繞點旋轉(zhuǎn),交射線于點,于點,于點,連接.
如圖當點與點重合時,請直接寫出線段的數(shù)量關系;
如圖,當點在線段上時,與有什么數(shù)量關系?請說明你的結論;
如圖,當點在線段的延長線上時,與有什么數(shù)量關系?請說明你的結論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com