【題目】在菱形ABCD中,∠ABC=60°,點P是射線BD上一動點,以AP為邊向右側作等邊APE,點E的位置隨著點P的位置變化而變化.

(1)探索發(fā)現(xiàn)

如圖1,當點E在菱形ABCD內(nèi)部時,連接CE,BPCE的數(shù)量關系是_______CEAD的位置關系是_______.

(2)歸納證明

證明2,當點E在菱形ABCD外部時,(1)中的結論是否還成立?若成立,請予以證明;若不成立,請說明理由.

(3)拓展應用

如圖3,當點P在線段BD的延長線上時,連接BE,若AB=5,BE=13,請直接寫出線段DP的長.

【答案】(1)BP=CE,CEAD(2)(1)中的結論仍成立.理由見解析; (3)PD=

【解析】

1)由菱形ABCD和∠ABC=60°可證△ABC與△ACD是等邊三角形,由等邊△APE可得AP=AE,∠PAE=BAC=60°,減去公共角∠PAC得∠BAP=CAE,根據(jù)SAS可證得△BAP≌△CAE,故有BP=CE,∠ABP=ACE.由菱形對角線平分一組對角可證∠ABP=30°,故∠ACE=30°CE平分∠ACD,由AC=CD等腰三角形三線合一可得CEAD
2)證明過程同(1).
3)由AB=5即△ABC為等邊三角形可求得BD的長.連接CE,由(2)可求∠BCE=90°,故在RtBCE中,由勾股定理可求CE的長.又由(2)可得BP=CE,由DP=BP-BD即求得DP的長.

解:(1) ∵菱形ABCD中,∠ABC=60°
AB=BC=CD=AD,∠ADC=ABC=60°
∴△ABC、△ACD是等邊三角形
AB=ACAC=CD,∠BAC=ACD=60°
∵△APE是等邊三角形
AP=AE,∠PAE=60°
∴∠BAC-PAC=PAE-PAC
即∠BAP=CAE
在△BAP與△CAE


∴△BAP≌△CAESAS
BP=CE,∠ABP=ACE
BD平分∠ABC
∴∠ACE=ABP=ABC=30°
CE平分∠ACD
CEAD
故答案為:BP=CE,CEAD;

(2)(1)中的結論仍成立,證明如下:

ADCE交于點O

∵四邊形ABCD為菱形,且∠ABC=60°

∴△ABC為等邊三角形.

AB=AC,∠BAC=60°

∴∠BAP=CAE

又∵ΔAPE為等邊三角形

AP=AE

在△BAP與△CAE

∴△BAPΔCAE(SAS)

BP=CE

∴∠ACE=ABP=30°

又∵∠CAD=60°

A0C=90°

ADCE

(3) 連接CE,設ACBD相交于點O


AB=5
BC=AC=AB=5
AO=AC=

BO=
BD=2BO=5
∵∠BCE=BCA+ACE=90°,BE=13
CE= =12
由(2)可知,BP=CE=12
DP=BP-BD=12-5

故答案為:(1)BP=CE,CEAD;(2)(1)中的結論仍成立.理由見解析; (3)PD=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=3cm,BC=6cm.點P從點D出發(fā)向點A運動,運動到點A即停止;同時,點Q從點B出發(fā)向點C運動,運動到點C即停止,點P、Q的速度都是1cm/s.連接PQAQ、CP.設點PQ運動的時間為ts

1)當t為何值時,四邊形ABQP是矩形;

2)當t為何值時,四邊形AQCP是菱形;

3)分別求出(2)中菱形AQCP的周長和面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)學興趣小組活動中,小明進行數(shù)學探究活動,將邊長為的正方形ABCD與邊長為2的正方形AEFG按圖1位置放置,AD與AE在同一直線l上,AB與AG在同一直線上.

(1)圖1中,小明發(fā)現(xiàn)DG=BE,請你幫他說明理由.

(2)小明將正方形ABCD按如圖2那樣繞點A旋轉一周,旋轉到當點C恰好落在直線l上時,請你直接寫出此時BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC是一塊直角三角板,且C=90°,A=30°,現(xiàn)將圓心為點O的圓形紙片放置在三角板內(nèi)部.

(1)如圖,當圓形紙片與兩直角邊AC、BC都相切時,試用直尺與圓規(guī)作出射線CO;(不寫作法與證明,保留作圖痕跡)

(2)如圖,將圓形紙片沿著三角板的內(nèi)部邊緣滾動1周,回到起點位置時停止,若BC=9,圓形紙片的半徑為2,求圓心O運動的路徑長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】實踐與探索

(1)填空: =______; =______; =______; ______;

(2)觀察第(1)題的計算結果回答: 一定等于嗎?你發(fā)現(xiàn)其中的規(guī)律了嗎?請把你觀察到的規(guī)律歸納出來 。

(3)利用你總結的規(guī)律計算: .(2<x<3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個長方體紙盒的平面展開圖如圖所示,紙盒中相對兩個面上的數(shù)互為相反數(shù).

1)填空:________,________,________.

2)先化簡,再求值:.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,每個小正方形的邊長為1個單位長度.平面直角坐標系的原點在格點上,軸、軸都在格線上.線段的兩個端點也在格點上.

(1)若將線段繞點逆時針旋轉90°得到線段,試在圖中畫出線段.

(2)若線段與線段關于軸對稱,請畫出線段.

(3)若點是此平面直角坐標系內(nèi)的一點,當點四邊圍成的四邊形為平行四邊形 時,請你直接寫出點的坐標(寫出一個即可).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BE是圓O的直徑,AEB的延長線上,AP為圓O的切線,P為切點,弦PD垂直于BE于點C.

(1)求證:∠AOD=∠APC;

(2)若OC:CB=1:2,AB=6,求圓O的半徑及tan∠APB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有個形如六邊形的點陣,它的中心是一個點,算第一層,第二層每邊有兩個點,第三層每邊有三個點,依此類推.

1)填寫下表:

層數(shù)

1

2

3

4

5

6

該層對應的點數(shù)

1

6

_____

18

_____

_____

2)寫出第n層所對應的點數(shù)為_____;

3)如果某一層共96個點,那么它是第_____層,此時所有層中共有_____個點.

查看答案和解析>>

同步練習冊答案