【題目】如圖,已知AB是⊙O的直徑,AD切⊙O于點A,點C是 的中點,則下列結論:①OC∥AE;②EC=BC;③∠DAE=∠ABE;④AC⊥OE,其中正確的有( )

A.1個
B.2個
C.3個
D.4個

【答案】D
【解析】由C為 的中點,利用垂徑定理的逆定理得出OC⊥BE,由AB為圓的直徑,利用直徑所對的圓周角為直角得到AE⊥BE,即可確定出OC∥AE,故A正確;

由C為 的中點,即 ,利用等弧對等弦,得到BC=EC,故B正確;

由AD為圓的切線,得到AD⊥OA,進而確定出一對角互余,再由直角三角形ABE中兩銳角互余,利用同角的余角相等,得到∠DAE=∠ABE,故C正確;

AC不一定垂直于OE,故D錯誤.

故答案為:D

利用垂徑定理的逆定理得出OC⊥BE,由AB為圓的直徑,利用直徑所對的圓周角為直角得到AE⊥BE,即可確定出OC∥AE;利用等弧對等弦,得到BC=EC;利用同角的余角相等,得到∠DAE=∠ABE.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】x滿足(x4) (x9)6,求(x4)2+(x9)2的值.

解:設x4a,x9b,則(x4)(x9)ab6,ab(x4)(x9)5,

(x4)2+(x9)2a2+b2(ab)22ab522×637

請仿照上面的方法求解下面問題:

(1)x滿足(x2)(x5)10,求(x2)2 + (x5)2的值

(2)已知正方形ABCD的邊長為x,E,F分別是ADDC上的點,且AE1CF3,長方形EMFD的面積是15,分別以MFDF作正方形,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC 中,ABADCBCE

1)當∠ABC90°時(如圖①),∠EBD °

2)當∠ABCn≠90)時(如圖②),求∠EBD 的度數(shù)(用含 n 的式子表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系上有點A1,0),點A第一次向右跳動至A1-1,1),第二次向左跳動至A22,1),第三次向右跳動至A3-22),第四次向左跳動至A43,2)依照此規(guī)律跳動下去,點A2020次跳動至A2020的坐標為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列文字,并完成證明;

已知:如圖,∠1=∠4,∠2=∠3,求證:ABCD;

證明:如圖,延長CFAB于點G

∵∠2=∠3

BECF

∴∠1

又∠1=∠4

∴∠4

ABCD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某移動通信公司推出了如下兩種移動電話計費方式,

月使用費/

主叫限定時間/分鐘

主叫超時費(元/分鐘)

方式一

30

600

0.20

方式二

50

600

0.25

說明:月使用費固定收取,主叫不超過限定時間不再收費,超過部分加收超時費.例如,方式一每月固定交費30元,當主叫計時不超過300分鐘不再額外收費,超過300分鐘時,超過部分每分鐘加收0.20元(不足1分鐘按1分鐘計算)

1)請根據題意完成如表的填空;

月主叫時間500分鐘

月主叫時間800分鐘

方式一收費/

   

130

方式二收費/

50

   

2)設某月主叫時間為t(分鐘),方式一、方式二兩種計費方式的費用分別為y1(元),y2(元),分別寫出兩種計費方式中主叫時間t(分鐘)與費用為y1(元),y2(元)的函數(shù)關系式;

3)請計算說明選擇哪種計費方式更省錢.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場購進甲、乙兩種空調共40臺.已知購進一臺甲種空調比購進一臺乙種空調進價多0.2萬元;用36萬元購進乙種空調數(shù)量是用18萬元購進甲種空調數(shù)量的4倍.請解答下列問題:

1)求甲、乙兩種空調每臺進價各是多少萬元?

2)若商場預計投入資金不多于11.5萬元用于購買甲、乙兩種空調,且購進甲種空調至少14臺,商場有哪幾種購進方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某企業(yè)設計了一款工藝品,每件的成本是50元,為了合理定價,投放市場進行試銷.據市場調查,銷售單價是100元時,每天的銷售量是50件,而銷售單價每降低1元,每天就可多售出5件,但要求銷售單價不得低于成本.
(1)求出每天的銷售利潤y(元)與銷售單價x(元)之間的函數(shù)關系式;
(2)求出銷售單價為多少元時,每天的銷售利潤最大?最大利潤是多少?
(3)如果該企業(yè)要使每天的銷售利潤不低于4000元,且每天的總成本不超過7000元,那么銷售單價應控制在什么范圍內?(每天的總成本=每件的成本×每天的銷售量)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A(1,1),B(3,1),C(3,﹣1),D(1,﹣1)構成正方形ABCD,以AB為邊做等邊△ABE,則∠ADE和點E的坐標分別為( 。

A. 15°和(2,1+

B. 75°和(2,﹣1)

C. 15°和(2,1+)或75°和(2,﹣1)

D. 15°和(2,1+)或75°和(2,1﹣

查看答案和解析>>

同步練習冊答案