【題目】如圖,在ABCD中,E是CD的中點,AE是延長線交BC的延長線于F,分別連接AC,DF,解答下列問題:
(1)求證:△ADE≌△FCE;
(2)若DC平分∠ADF,試確定四邊形ACFD是什么特殊四邊形?請說明理由.

【答案】
(1)證明:∵四邊形ABCD是平行四邊形,

∴AD∥BC,

∴∠DAE=∠F,∠D=∠ECF,

又∵E是DC的中點,

∴DE=CE,

在△ADE和△FCE中,

∴△ADE≌△FCE(AAS)


(2)解:若DC平分∠ADF,則四邊形ACFD是菱形;理由如下:

∵△ADE≌△FCE,

∴AD=CF,

又∵AD∥CF,

∴四邊形ACFD是平行四邊形,

∵DC平分∠ADF,

∴∠ADC=∠CDF,

∴∠FCD=∠CDF,

∴DF=CF,

∴四邊形ACFD是菱形


【解析】(1)由平行四邊形的性質(zhì)和中點的性質(zhì),易得∠DAE=∠F,∠D=∠ECF,AE=CE,繼而證得:△ADE≌△FCE.(2)由第(1)問中△ADE≌△FCE,易得AD=CF,又由AD∥CF,即可證得四邊形ACFD是平行四邊形,再證出DF=CF,即可得出結論.
【考點精析】認真審題,首先需要了解平行四邊形的性質(zhì)(平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】學校準備購置甲乙兩種羽毛球拍若干,已知甲種球拍的單價比乙種球拍的單價多40元,且購買4副甲種球拍與購買6副乙種球拍的費用相同.
(1)兩種球拍的單價各是多少元?
(2)若學校準備購買100副甲乙兩種羽毛球拍,且購買甲種球拍的費用不少于乙種球拍費用的3倍,問購買多少副甲種球拍總費用最低?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,需在一面墻上繪制兩個形狀相同的拋物絨型圖案,按照圖中的直角坐標系,最高點M到橫軸的距離是4米,到縱軸的距離是6米;縱軸上的點A到橫軸的距離是1米,右側(cè)拋物線的最大高度是左側(cè)拋物線最大高度的一半.(結果保留整數(shù)或分數(shù),參考數(shù)據(jù): = , =
(1)求左側(cè)拋物線的表達式;
(2)求右側(cè)拋物線的表達式;
(3)求這個圖案在水平方向上的最大跨度是多少米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABE中,∠A=105°,AE的垂直平分線MNBE于點C,且AB+BC=BE,則∠B的度數(shù)是( 。

A. 45° B. 60° C. 50° D. 55°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明為班級聯(lián)歡會設計了一個摸球游戲.游戲規(guī)則如下:在一個不透明的紙箱里裝有紅、黃、藍三種顏色的小球,它們除顏色外完全相同,其中紅球有2個,黃球有1個,藍球有1個.游戲者先從紙箱里隨機摸出一個球,記錄顏色后放回,將小球搖勻,再隨機摸出一個球,若兩次摸到的球顏色相同,則游戲者可獲得一份紀念品.請你利用樹狀圖或列表法求游戲者獲得紀念品的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為適應日益激烈的市場競爭要求,某工廠從2016年1月且開始限產(chǎn),并對生產(chǎn)線進行為期5個月的升降改造,改造期間的月利潤與時間成反比例;到5月底開始恢復全面生產(chǎn)后,工廠每月的利潤都比前一個月增加10萬元.設2016年1月為第1個月,第x個月的利潤為y萬元,其圖象如圖所示,試解決下列問題:
(1)分別求該工廠對生產(chǎn)線進行升級改造前后,y與x之間的函數(shù)關系式;
(2)到第幾個月時,該工廠月利潤才能再次達到100萬元?
(3)當月利潤少于50萬元時,為該工廠的資金緊張期,問該工廠資金緊張期共有幾個月?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】南山植物園中現(xiàn)有A、B兩個園區(qū),已知A園區(qū)為長方形,長為(x+y)米,寬為(x﹣y)米;B園區(qū)為正方形,邊長為(x+3y)米.

(1)請用代數(shù)式表示A、B兩園區(qū)的面積之和并化簡;

(2)現(xiàn)根據(jù)實際需要對A園區(qū)進行整改,長增加(11x﹣y)米,寬減少(x﹣2y)米,整改后A區(qū)的長比寬多350米,且整改后兩園區(qū)的周長之和為980米.

①求x、y的值;

②若A園區(qū)全部種植C種花,B園區(qū)全部種植D種花,且C、D兩種花投入的費用與吸引游客的收益如表:

求整改后A、B兩園區(qū)旅游的凈收益之和.(凈收益=收益﹣投入)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】點B(a,5)在第二象限,點C在y軸上移動,以BC為斜邊作等腰直角△BCD,我們發(fā)現(xiàn)直角頂點D點隨著C點的移動也在一條直線上移動,這條直線的函數(shù)表達式是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC為等腰直角三角形,點D是邊BC上一動點,以AD為直角邊作等腰直角△ADE,分別過A、E點向BC邊作垂線,垂足分別為F、G.連接BE.

(1)證明:BG=FD;

(2)求∠ABE的度數(shù).

查看答案和解析>>

同步練習冊答案