【題目】如圖,已知AB∥CD.
(1)判斷∠FAB與∠C的大小關系,請說明理由;
(2)若∠C=35°,AB是∠FAD的平分線.
①求∠FAD的度數;
②若∠ADB=110°,求∠BDE的度數.
【答案】(1)∠FAB=∠C;(2) ①∠FAD=70°;②∠BDE=35°
【解析】
(1)相等,根據平行線的性質由AB∥CD,得到∠FAB=∠C即可;
(2)①根據角平分線的定義得到∠FAD=2∠FAB,代入求出即可;
②求出∠ADB+∠FAD=180°,根據平行線的判定得出CF∥BD,再根據平行線的性質推出∠BDE=∠C=35°.
(1)∠FAB與∠C的大小關系是相等,
理由是:∵AB∥CD,
∴∠FAB=∠C.
(2)①∵∠FAB=∠C=35°,
∵AB是∠FAD的平分線,
∴∠FAD=2∠FAB=2×35°=70°,
答:∠FAD的度數是70°.
②∵∠ADB=110°,∠FAD=70°,
∴∠ADB+∠FAD=110°+70°=180°,
∴CF∥BD,
∴∠BDE=∠C=35°,
答:∠BDE的度數是35°.
科目:初中數學 來源: 題型:
【題目】某商店經銷某種玩具,該玩具每個進價 20 元,為進行促銷,商店制定如下“優(yōu)惠” 方案:如果一次銷售數量不超過 5 個,則每個按 50 元銷售:如果一次銷售數量超過 5 個,則每增加一個,所有玩具均降低 1 元銷售,但單價不得低于 30 元,一次銷售該玩具的單價 y(元)與銷售數量 x(個)之間的函數關系如下圖所示.
(1)結合圖形,求出 m 的值;射線 BC 所表示的實際意義是什么;
(2)求線段 AB 滿足的 y 與 x 之間的函數解析式,并直接寫出自變量的取值范圍;
(3)當銷售 15 個時,商店的利潤是多少元.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】直線AB、CD相交于點O,OE平分∠BOD.OF⊥CD,垂足為O,若∠EOF=54°.
(1)求∠AOC的度數;
(2)作射線OG⊥OE,試求出∠AOG的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形EFGH四個頂點分別在菱形ABCD的四條邊上,BE=BF,將△AEH,△CFG分別沿邊EH,FG折疊,當重疊部分為菱形且面積是菱形ABCD面積的 時,則 為( )
A.
B.2
C.
D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一空曠場地上設計一落地為矩形ABCD的小屋,AB+BC=10m.拴住小狗的10m長的繩子一端固定在B點處,小狗在不能進入小屋內的條件下活動,其可以活動的區(qū)域面積為S(m2).
①如圖1,若BC=4m,則S=m.
②如圖2,現考慮在(1)中的矩形ABCD小屋的右側以CD為邊拓展一正△CDE區(qū)域,使之變成落地為五邊形ABCED的小屋,其它條件不變.則在BC的變化過程中,當S取得最小值時,邊BC的長為m.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在一次測繪活動中,某同學站在點A處觀測停放于B、C兩處的小船,測得船B在點A北偏東75°方向150米處,船C在點A南偏東15°方向120米處,則船B與船C之間的距離為______米(精確到0.1).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀:已知a+b=﹣4,ab=3,求a2+b2的值.
解:∵a+b=﹣4,ab=3,
∴a2+b2=(a+b)2﹣2ab=(﹣4)2﹣2×3=10.
請你根據上述解題思路解答下面問題:
(1)已知a﹣b=﹣3,ab=﹣2,求(a+b)(a2﹣b2)的值.
(2)已知a﹣c﹣b=﹣10,(a﹣b)c=﹣12,求(a﹣b)2+c2的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com