【題目】如圖,已知△ABC中,∠ABC=50°,P為△ABC內(nèi)一點,過點P的直線MN分別交AB、BC于點M、N.若M在PA的中垂線上,N在PC的中垂線上,則∠APC的度數(shù)為____________°

【答案】115°

【解析】

根據(jù)三角形的內(nèi)角和得到∠BAC+ACB=130°,根據(jù)線段的垂直平分線的性質(zhì)得到AM=PM,PN=CN,由等腰三角形的性質(zhì)得到∠MAP=APM,CPN=PCN,推出∠MAP+PCN=PAC+ACP=×130°=65°,于是得到結(jié)論.

∵∠ABC=50°,

∴∠BAC+ACB=130°,

∵若MPA的中垂線上,NPC的中垂線上,

AM=PM,PN=CN,

∴∠MAP=APM,CPN=PCN,

∵∠APC=180°-APM-CPN=180°-PAC-ACP,

∴∠MAP+PCN=PAC+ACP=×130°=65°,

∴∠APC=115°,

故答案為:115°

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,AB=AC=4,B=C=40°.點D在線段BC上運動(點D不與B、C重合),連接AD,作∠ADE=40°,DE交線段ACE

(1)當∠BAD=20°時,∠EDC=   °;

(2)當DC等于多少時,ABD≌△DCE?試說明理由;

(3)ADE能成為等腰三角形嗎?若能,請直接寫出此時∠BAD的度數(shù);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,∠AOB=41°,點P為∠AOB內(nèi)的一點,分別作出P點關(guān)于OA,OB的對稱點,連接OAM,交OBN,,則PMN的周長為_________,∠MPN________°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】尺規(guī)作圖:某學校正在進行校園環(huán)境的改造工程設(shè)計,準備在校內(nèi)一塊四邊形花壇內(nèi)栽上一棵桂花樹.如圖,要求桂花樹的位置(視為點P),到花壇的兩邊AB、BC的距離相等,并且點P到點A、D的距離也相等.請用尺規(guī)作圖作出栽種桂花樹的位置點P(不寫作法,保留作圖痕跡).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(已知反比例函數(shù)y= 與一次函數(shù)y=x+2的圖象交于點A(﹣3,m)
(1)求反比例函數(shù)的解析式;
(2)如果點M的橫、縱坐標都是不大于3的正整數(shù),求點M在反比例函數(shù)圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:(π﹣3)0+|﹣2|﹣ ÷ +(﹣1)1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知反比例函數(shù)的圖象經(jīng)過點P(2,﹣3).
(1)求該函數(shù)的解析式;
(2)若將點P沿x軸負方向平移3個單位,再沿y軸方向平移n(n>0)個單位得到點P′,使點P′恰好在該函數(shù)的圖象上,求n的值和點P沿y軸平移的方向.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠C=RtAB=5cm,BC=3cm,若動點P從點C開始,按CABC的路徑運動,且速度為每秒1cm,設(shè)出發(fā)的時間為t秒.

1)出發(fā)2秒后,求△ABP的周長.

2)問t滿足什么條件時,△BCP為直角三角形?

3)另有一點Q,從點C開始,按CBAC的路徑運動,且速度為每秒2cm,若PQ兩點同時出發(fā),當P、Q中有一點到達終點時,另一點也停止運動.當t為何值時,直線PQ把△ABC的周長分成相等的兩部分?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】以下列數(shù)組作為三角形的三條邊長,其中能構(gòu)成直角三角形的是( )

A. 1, 3 B. , ,5 C. 1.5,2,2.5 D. ,

【答案】C

【解析】A12+2≠32,不能構(gòu)成直角三角形,故選項錯誤;

B(2+2≠52,不能構(gòu)成直角三角形,故選項錯誤;

C、1.52+22=2.52,能構(gòu)成直角三角形,故選項正確;

D、(2+22,不能構(gòu)成直角三角形,故選項錯誤.

故選:C

型】單選題
結(jié)束】
3

【題目】在RtABC中,C=90°,AC=9,BC=12,則點C到斜邊AB的距離是( )

ABC9D6

查看答案和解析>>

同步練習冊答案