【題目】我市規(guī)劃中某地段地鐵線路要穿越護(hù)城河PQ,站點(diǎn)A和站點(diǎn)B在河的兩側(cè),要測算出A、B間的距離.工程人員在點(diǎn)P處測得A在正北方向,B位于南偏東24.5°方向,前行1200m,到達(dá)點(diǎn)Q出,測得A位于北偏東49°方向,B位于南偏西41°方向.根據(jù)以上數(shù)據(jù),求A、B間的距離.(參考數(shù)據(jù):cos41°≈0.75)

【答案】解:∵∠PQB=90°﹣41°=49°,
∠BPQ=90°﹣24.5°=65.5°,
∴∠PBQ=180°﹣49°﹣65.5°=65.5°,
∴∠BPQ=∠PBQ,
∴BQ=PQ;
∵∠AQB=180°﹣49°﹣41°=90°,∠PQA=90°﹣49°=41°,
∴AQ= = =1600,
∵BQ=PQ=1200,
∴AB2=AQ2+BQ2=16002+12002 ,
∴AB=2000,
答:A、B的距離為2000m.
【解析】首先由已知求出∠PBQ和∠BPQ的度數(shù)得出線段BQ與PQ,根據(jù)已知求出∠PQA,再由直角三角形PQA求出AQ,又由已知得∠AQB=90°,所以根據(jù)勾股定理求出A,B間的距離.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國實(shí)施的“一帶一路”戰(zhàn)略方針,惠及沿途各國.中歐班列也已融入其中.從我國重慶開往德國的杜伊斯堡班列,全程約11025千米.同樣的貨物,若用輪船運(yùn)輸,水路路程是鐵路路程的1.6倍,水路所用天數(shù)是鐵路所用天數(shù)的3倍,列車平均日速(平均每日行駛的千米數(shù))是輪船平均日速的2倍少49千米.分別求出列車及輪船的平均日速.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了響應(yīng)“足球進(jìn)校園”的目標(biāo),某校計(jì)劃為學(xué)校足球隊(duì)購買一批足球,已知購買2個(gè)A品牌的足球和3個(gè)B品牌的足球共需380元;購買4個(gè)A品牌的足球和2個(gè)B品牌的足球共需360元.

(1)求A,B兩種品牌的足球的單價(jià).

(2)求該校購買20個(gè)A品牌的足球和2個(gè)B品牌的足球的總費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形ABCD中,AB=6,第一次平移長方形ABCD沿AB的方向向右平移5個(gè)單位,得到長方形A1B1C1D1,第2次平移將長方形A1B1C1D1沿A1B1的方向向右平移5個(gè)單位,得到長方形A2B2C2D2,第n次平移將長方形An1Bn1Cn1Dn1沿An1Bn1的方向平移5個(gè)單位,得到長方形AnBnCnDn(n>2),若ABn的長度為56,則n=_

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,E是直線ABCD內(nèi)部一點(diǎn),ABCD,連接EA,ED

(1)探究猜想:

①若∠A=20°,∠D=40°,則∠AED= °

②猜想圖①中∠AED,∠EAB,∠EDC的關(guān)系,并用兩種不同的方法證明你的結(jié)論.

(2)拓展應(yīng)用:

如圖②,射線FEl1,l2交于分別交于點(diǎn)E、F,ABCD,a,b,cd分別是被射線FE隔開的4個(gè)區(qū)域(不含邊界,其中區(qū)域a,b位于直線AB上方,P是位于以上四個(gè)區(qū)域上的點(diǎn),猜想:∠PEB,∠PFC,∠EPF的關(guān)系(任寫出兩種,可直接寫答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,連接BD,點(diǎn)E,F(xiàn)分別在AB和CD上,連接CE,AF,CE與AF分別交B于點(diǎn)N,M.已知∠AMD=∠BNC.

(1)若∠ECD=60°,求∠AFC的度數(shù);

(2)若∠ECD=∠BAF,試判斷∠ABD與∠BDC之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,每個(gè)小正方形的邊長為1,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線的交點(diǎn)的三角形)ABC的頂點(diǎn)A、C的坐標(biāo)分別為A(-4,5),C(-1,3).

(1)請?jiān)诰W(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系(不寫作法);

(2)請作出△ABC關(guān)于y軸對稱△A'B'C';

(3)分別寫出A'、B'、C'的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,所有正方形的中心均在坐標(biāo)原點(diǎn),且各邊與x軸或y軸平行,從內(nèi)到外,它們的邊長依次為2,4,6,8 …,頂點(diǎn)依次為A1,A2,A3,A4,A5,…,則頂點(diǎn)A55的坐標(biāo)是( )

A. (13,13) B. (-13,-13) C. (-14,-14) D. (14,14)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,MN是⊙O的直徑,MN=4,∠AMN=40°,點(diǎn)B為弧AN的中點(diǎn),點(diǎn)P是直徑MN上的一個(gè)動(dòng)點(diǎn),則PA+PB的最小值為( )

A.2
B.2
C.2
D.3

查看答案和解析>>

同步練習(xí)冊答案