【題目】如圖,四邊形ABCD是邊長為2的菱形,E,F分別是AB,AD的中點(diǎn),連接EF,EC,將△FAE繞點(diǎn)F旋轉(zhuǎn)180°得到△FDM.
(1)補(bǔ)全圖形并證明:EF⊥AC;
(2)若∠B=60°,求△EMC的面積.
【答案】(1)證明見解析;(2).
【解析】
(1)①按要求畫出圖形即可;②連接BD,由已知條件可知EF是△ABD的中位線,由此可得EF∥BD,由菱形的性質(zhì)可得AC⊥BD,從而可得EF⊥AC;
(2)由已知條件易得△ABC是等邊三角形,結(jié)合點(diǎn)E是AB的中點(diǎn)可得CE⊥AB,結(jié)合AB∥CD可得CE⊥MC,在Rt△BCE中由已知條件求得CE的長,由已知易得AE=1,由此可得MD=1,從而可得CD的長,這樣即可由S△CME=MC·CE求出其面積了.
(1)①補(bǔ)全圖形如下圖所示:
②如下圖,連接DB,
∵四邊形ABCD是菱形,
∴DB⊥AC,
∵E,F(xiàn)分別是AB,AD的中點(diǎn),
∴EF∥BD.
∴EF⊥AC.
(2)∵四邊形ABCD是菱形,
∴AB=BC.
∵∠B=60°,
∴△ABC是等邊三角形,
∵E是AB的中點(diǎn),
∴CE⊥AB,CE⊥MC.
即△EMC是直角三角形,且CE=BC×sin60°=.
由(1)得MD=AE=AB=1.
∴MC=MD+DC=3.
∴S△EMC=MC×CE=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC 的一邊 AB 在 x 軸上,∠ABC=90°,點(diǎn) C(4,8) 在第一象限內(nèi),AC 與 y 軸交于點(diǎn) E,拋物線 y=+bx+c 經(jīng)過 A、B 兩點(diǎn),與 y 軸交于點(diǎn) D(0,﹣6).
(1)請直接寫出拋物線的表達(dá)式;
(2)求 ED 的長;
(3)若點(diǎn) M 是 x 軸上一點(diǎn)(不與點(diǎn) A 重合),拋物線上是否存在點(diǎn) N,使∠CAN=∠MAN.若存在,請直接寫出點(diǎn) N 的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知E、F分別為正方形ABCD的邊AB,BC的中點(diǎn),AF與DE交于點(diǎn)M,O為BD的中點(diǎn),則下列結(jié)論:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤AM=MF.其中正確結(jié)論的個(gè)數(shù)是( )
A. 5個(gè) B. 4個(gè) C. 3個(gè) D. 2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線、相交于,∠EOC=90°,是的角平分線,,求的度數(shù).其中一種解題過程如下:請?jiān)诶ㄌ栔凶⒚鞲鶕?jù),在橫線上補(bǔ)全步驟.
解:∵
( )
∴
∵是的角平分線
∴ ( )
∴
∵
( )
∴ ( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某大型商場銷售一種茶具和茶碗,茶具每套定價(jià)2000元,茶碗每只定價(jià)200元,“雙十一”期間商場決定開展促銷活動,活動期間向客戶提供兩種優(yōu)惠方案,方案一:買一套茶具送一只茶碗;方案二,茶具和茶碗按定價(jià)的九五折付款,現(xiàn)在某客戶要到商場購買茶具30套,茶碗只().
(1)若客戶按方案一,需要付款 元;若客戶按方案二,需要付款 元.(用含的代數(shù)式表示)
(2)若,試通過計(jì)算說明此時(shí)哪種購買方案比較合適?
(3)當(dāng),能否找到一種更為省錢的方案,如果能是寫出你的方案,并計(jì)算出此方案應(yīng)付錢數(shù);如果不能說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=∠DOC=90°,OE平分∠AOD,反向延長射線OE至F.
(1)∠AOD和∠BOC是否互補(bǔ)?說明理由;
(2)射線OF是∠BOC的平分線嗎?說明理由;
(3)反向延長射線OA至點(diǎn)G,射線OG將∠COF分成了4:3的兩個(gè)角,求∠AOD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一個(gè)直角梯形的一條底邊長為7厘米,兩腰長分別為8厘米和10厘米,那么這個(gè)梯形的中位線是____厘米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖為奇數(shù)排成的數(shù)表,用十字框任意框出個(gè)數(shù),記框內(nèi)中間這個(gè)數(shù)為,其它四個(gè)數(shù)分別記為,,,(如圖);圖為按某一規(guī)律排成的另一個(gè)數(shù)表,用十字框任意框出個(gè)數(shù),記框內(nèi)中間這個(gè)數(shù)為,其它四個(gè)數(shù)記為,,,(如圖).
(1)請你含的代數(shù)式表示.
(2)請你含的代數(shù)式表示.
(3)若,,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解我市市區(qū)初中生“綠色出行”方式的情況,某初中數(shù)學(xué)興趣小組以問卷調(diào)查的形式,隨機(jī)調(diào)查了本校部分學(xué)生上下學(xué)的主要出行方式,并將調(diào)查結(jié)果繪制了如圖所示的兩幅不完整的統(tǒng)計(jì)圖,請根據(jù)圖中提供的信息解答以下問題:
種類 | |||||
出行方式 | 步行 | 公交車 | 自行車 | 私家車 | 出租車 |
(1)參與本次問卷調(diào)查的學(xué)生共有_________人,其中選擇類的人數(shù)所占的百分比為____________.
(2)請通過計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖,并計(jì)算扇形統(tǒng)計(jì)圖中類所對應(yīng)扇形的圓心角的度數(shù).
(3)我市市區(qū)初中生每天約人出行,若將,,這三類出行方式均視為“綠色出行”方式,請估計(jì)我市市區(qū)初中生選取“綠色出行”方式的人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com