【題目】為了提高學(xué)生的綜合素質(zhì),某中學(xué)成立了以下社團(tuán):A.機(jī)器人,B.圍棋,C.羽毛球,D.電影配音.每人只能加入一個(gè)社團(tuán),為了解學(xué)生參加社團(tuán)的情況,從參加社團(tuán)的學(xué)生中隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如圖兩幅不完整的統(tǒng)計(jì)圖,其中圖(1)中A所占扇形的圓心角為36°.

根據(jù)以上信息,解答下列問題:

1)這次被調(diào)查的學(xué)生共有   人,B所占扇形的圓心角是   度;

2)請你將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)若該校共有1000名學(xué)生加人了社團(tuán),請你估計(jì)這1000名學(xué)生中有多少人參加了羽毛球社團(tuán);

4)在機(jī)器人社團(tuán)活動中,由于甲、乙、丙、丁四人平時(shí)的表現(xiàn)優(yōu)秀,現(xiàn)決定從這四人中任選兩名參加機(jī)器人大賽,用樹狀圖或列表法求恰好選中甲、乙兩位同學(xué)的概率.

【答案】1200;144;(2)見解析;(3300人;(4

【解析】

1)由A類有20人,所占扇形的圓心角為36°,即可求得這次被調(diào)查的學(xué)生數(shù);用這次被調(diào)查的學(xué)生數(shù)乘以B所占的百分比,即可求得B所占扇形的圓心角;

2)首先求得C項(xiàng)目對應(yīng)人數(shù),即可補(bǔ)全統(tǒng)計(jì)圖;

3)利用樣本估計(jì)總體,用該校1000學(xué)生數(shù)乘以參加了羽毛球社團(tuán)的人數(shù)所占的百分比即可得到結(jié)論;

4)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與恰好選中甲、乙兩位同學(xué)的情況,再利用概率公式即可求得答案.

解:(1)∵A類有20人,所占扇形的圓心角為36°,

∴這次被調(diào)查的學(xué)生共有:20÷200(人);

B所占扇形的圓心角是:360°×144°.

故答案為:200,144

2C項(xiàng)目對應(yīng)人數(shù)為:20020804060(人);

補(bǔ)充如圖.

31000×300(人).

答:這1000名學(xué)生中有300人參加了羽毛球社團(tuán);

4)畫樹狀圖得:

∵共有12種等可能的情況,恰好選中甲、乙兩位同學(xué)的有2種,

P(選中甲、乙)=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)是常數(shù),)的的部分對應(yīng)值如下表:

0

2

6

0

6

下列結(jié)論:

;

②當(dāng)時(shí),函數(shù)最小值為;

③若點(diǎn),點(diǎn)在二次函數(shù)圖象上,則;

④方程有兩個(gè)不相等的實(shí)數(shù)根.

其中,正確結(jié)論的序號是__________________.(把所有正確結(jié)論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:點(diǎn)為圖形上任意一點(diǎn),點(diǎn)為圖形上任意一點(diǎn),若點(diǎn)與點(diǎn)之間的距離始終滿足,則稱圖形與圖形相離.

1)已知點(diǎn)、、

①與直線相離的點(diǎn)是 ;

②若直線相離,求的取值范圍;

2)設(shè)直線、直線及直線圍成的圖形為,⊙的半徑為,圓心的坐標(biāo)為,直接寫出⊙與圖形相離的的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線軸交于點(diǎn),與軸交于點(diǎn),拋物線經(jīng)過點(diǎn)

(1)、滿足的關(guān)系式及的值.

(2)當(dāng)時(shí),若的函數(shù)值隨的增大而增大,求的取值范圍.

(3)如圖,當(dāng)時(shí),在拋物線上是否存在點(diǎn),使的面積為1?若存在,請求出符合條件的所有點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與x軸相交于點(diǎn)A(﹣3,0)、點(diǎn)B10),與y軸交于點(diǎn)C0,3),點(diǎn)D是拋物線上一動點(diǎn),聯(lián)結(jié)OD交線段AC于點(diǎn)E

1)求這條拋物線的解析式,并寫出頂點(diǎn)坐標(biāo);

2)求∠ACB的正切值;

3)當(dāng)AOEABC相似時(shí),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中直線y=x﹣2與y軸相交于點(diǎn)A,與反比例函數(shù)在第一象限內(nèi)的圖象相交于點(diǎn)B(m,2).

(1)求反比例函數(shù)的關(guān)系式;

(2)將直線y=x﹣2向上平移后與反比例函數(shù)圖象在第一象限內(nèi)交于點(diǎn)C,且ABC的面積為18,求平移后的直線的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)的坐標(biāo)為,過點(diǎn)軸的垂線交直線于點(diǎn),以原點(diǎn)為圓心,的長為半徑畫弧交軸正半軸于點(diǎn);再過點(diǎn)軸的垂線交直線于點(diǎn),以原點(diǎn)為圓心,的長為半徑畫弧交軸正半軸于點(diǎn),...,按此做法進(jìn)行下去,則的長是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,的平分線,是射線上一點(diǎn),.動點(diǎn)從點(diǎn)出發(fā),以的速度沿水平向左作勻速運(yùn)動,與此同時(shí),動點(diǎn)從點(diǎn)出發(fā),也以的速度沿豎直向上作勻速運(yùn)動.連接,交于點(diǎn).經(jīng)過、、三點(diǎn)作圓,交于點(diǎn),連接、.設(shè)運(yùn)動時(shí)間為,其中

1)求的值;

2)是否存在實(shí)數(shù),使得線段的長度最大?若存在,求出的值;若不存在,說明理由.

3)求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知圓O的直徑AB垂直于弦CD于點(diǎn)E,連接CO并延長交AD于點(diǎn)F,且CFAD

1)證明:點(diǎn)EOB的中點(diǎn);

2)若AB=8,求CD的長.

查看答案和解析>>

同步練習(xí)冊答案